File size: 27,860 Bytes
9ef89a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
"""
Convert weights from models in other formats (primairly huggingface) to megatron checkpoints.

This script supports converting Falcon, LLaMa and LLaMa 2 weights to megatron checkpoints.
Depending on the model to convert, the inputs might differ.
- Falcon:
    Weights are automatically retrieved from the official implementation hosted in huggingface.
    Thus, the `--cache-dir` argument is optional, if specified it should point to
    the huggingface cache directory where the huggingface Falcon weights will be stored.
    You will need to specify the `--size` argument to determine which version to download
    (i.e. Falcon 7B or 40B).
- LLaMa, LLaMa 2 and CodeLlama:
    Converting llama weights can be done either fetching the weights hosted
    in huggingface (recommended as it is the easier method) or directly from the
    weights provided by Meta.
    - From Meta weights (only available for LLaMa and LLaMa 2):
        You will need to specify the `--cache-dir` to the directory where the
        llama weights are stored.
        This will by default have the form `xB` (e.g. 7B or 70B) for llama v1,
        or `llama-2-xb` (e.g. llama-2-7b) for llama v2.
    - From huggingface weights:
        If `--cache-dir` is not specified or the directory specified does not
        contain the format expected from Meta weights, the converter will automatically
        retrieve the weights from huggingface, in which case the `--cache-dir` will
        have the same semantics as with Falcon.

        Note that to download llama v2 weights from huggingface, you will need to
        login using `huggingface-cli login` with a huggingface account which has been
        granted access to the `meta-llama/Llama-2-7b-hf` model.
        

In all cases, the megatron checkpoint will be stored in the `--out` argument.
If a huggingface is specified, the intermediate weights (i.e. the huggingface weights)
stored therein will not be removed when the conversion succeeds.
"""

import re
import shutil
import sys
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import Optional

import torch
from tqdm.auto import trange
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, GemmaTokenizer, GemmaForCausalLM
from utils.merge_llama import merge_llama
from utils.permute_qkv import permute_qkv

llama_s2layer = {1:22, 7: 32, 8: 32, 13: 40, 30: 60, 34: 48, 65: 80, 70: 80}
llama_s2heads = {1:32, 7: 32, 8: 32, 13: 40, 30: 52, 34: 64, 65: 64, 70: 64}
llama_s2dense = {
    1: 5632,
    7: 11008,
    8: 14336,
    13: 13824,
    30: 17920,
    34: 22016,
    65: 22016,
    70: 28672,
}  # should be (2/3)*4*d, but it isn't exaclty that
llama_s2hidden = {1: 2048, 7: 4096, 8:4096, 13: 5120, 30: 6656, 34: 8192, 65: 8192, 70: 8192}

gemma_s2layer = {2:18, 7: 28}
gemma_s2heads = {2:8, 7: 16}
gemma_s2dense = {2: 16384, 7: 24576}
gemma_s2hidden = {2: 2048, 7: 3072}
gemma_headsize = {2: 256, 7: 256}

def falcon_to_megatron(weights: dict, size: int) -> dict:
    def permute(qkv_w):
        return permute_qkv(qkv_w, dim, n_heads, n_heads_kv)

    embedding = {}
    transformer = {}
    if size == 7:
        n_layer = 32
        dim = 4544
        n_heads = 71
        n_heads_kv = 1
    else:
        n_layer = 60
        dim = 8192
        n_heads = 128
        n_heads_kv = 8

    # weights independent of layers (i.e. token embeddings and layernorms
    assert torch.allclose(
        weights["lm_head.weight"], weights["transformer.word_embeddings.weight"]
    )
    embedding["word_embeddings.weight"] = weights["transformer.word_embeddings.weight"]
    transformer["final_layernorm.weight"] = weights["transformer.ln_f.weight"]
    transformer["final_layernorm.bias"] = weights["transformer.ln_f.bias"]

    # copy weights for each transformer layer
    for layer in trange(n_layer, desc="Converting weights"):
        prefix1 = f"layers.{layer}"
        prefix2 = f"transformer.h.{layer}"
        # mlp
        transformer[f"{prefix1}.mlp.dense_h_to_4h.weight"] = weights[
            f"{prefix2}.mlp.dense_h_to_4h.weight"
        ]
        transformer[f"{prefix1}.mlp.dense_4h_to_h.weight"] = weights[
            f"{prefix2}.mlp.dense_4h_to_h.weight"
        ]
        # qkv weights
        transformer[f"{prefix1}.attention.query_key_value.weight"] = permute(
            weights[f"{prefix2}.self_attention.query_key_value.weight"]
        )
        # dense
        transformer[f"{prefix1}.attention.dense.weight"] = weights[
            f"{prefix2}.self_attention.dense.weight"
        ]
        # falcon7 and falcon40 differ in the input layernorms
        if size == 7:
            transformer[f"{prefix1}.input_layernorm.weight"] = weights[
                f"{prefix2}.input_layernorm.weight"
            ]
            transformer[f"{prefix1}.input_layernorm.bias"] = weights[
                f"{prefix2}.input_layernorm.bias"
            ]
        else:
            transformer[f"{prefix1}.input_layernorm.weight"] = weights[
                f"{prefix2}.ln_attn.weight"
            ]
            transformer[f"{prefix1}.mlp_layernorm.weight"] = weights[
                f"{prefix2}.ln_mlp.weight"
            ]
            transformer[f"{prefix1}.input_layernorm.bias"] = weights[
                f"{prefix2}.ln_attn.bias"
            ]
            transformer[f"{prefix1}.mlp_layernorm.bias"] = weights[
                f"{prefix2}.ln_mlp.bias"
            ]
    return {"embedding": embedding, "transformer": transformer}


def llama_to_megatron(
    weights: dict, size: int, source: str = "meta", version: int = 1
) -> dict:
    def permute(qkv_w):
        if source == "hf":
            return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads)
        return qkv_w

    def rearrange_qkv(wq, wk, wv):
        wq = torch.split(wq, n_hidden_per_head, dim=0)
        wk = torch.split(wk, n_hidden_per_head, dim=0)
        wv = torch.split(wv, n_hidden_per_head, dim=0)
        assert len(wq) == n_heads
        assert len(wk) == n_kv_heads
        assert len(wv) == n_kv_heads
        n_qs_per_kv = n_heads // n_kv_heads
        w_qkv = []
        for i in range(n_kv_heads):
            w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
            w_qkv += [wk[i], wv[i]]
        return permute(torch.concat(w_qkv))

    # config
    n_layer = llama_s2layer[size]
    hidden = llama_s2hidden[size]
    n_heads = llama_s2heads[size]
    n_hidden_per_head = hidden // n_heads
    if version==1 or size==13:
        n_kv_heads=n_heads
    elif size==1:
        n_kv_heads=4
    else:
        n_kv_heads=8

    # weights independent of layers
    embedding = {"word_embeddings.weight": weights["tok_embeddings.weight"]}
    transformer = {"final_layernorm.weight": weights["norm.weight"]}
    lm_head = weights["output.weight"]

    # get all the other weights
    for layer in trange(n_layer, desc="Converting weights"):
        prefix = f"layers.{layer}"
        # identical weights
        transformer[f"{prefix}.attention.dense.weight"] = weights[
            f"{prefix}.attention.wo.weight"
        ]
        transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
            f"{prefix}.ffn_norm.weight"
        ]
        transformer[f"{prefix}.input_layernorm.weight"] = weights[
            f"{prefix}.attention_norm.weight"
        ]
        transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
            f"{prefix}.feed_forward.w2.weight"
        ]
        # concatenate up, gate mlp weights
        transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
            [
                weights[f"{prefix}.feed_forward.w3.weight"],
                weights[f"{prefix}.feed_forward.w1.weight"],
            ]
        )
        # finally, qkv requires serious manipulation to get right
        transformer[f"{prefix}.attention.query_key_value.weight"] = rearrange_qkv(
            weights[f"{prefix}.attention.wq.weight"],
            weights[f"{prefix}.attention.wk.weight"],
            weights[f"{prefix}.attention.wv.weight"],
        )

        # release references to original weights (free mem)
        del weights[f"{prefix}.feed_forward.w3.weight"]
        del weights[f"{prefix}.feed_forward.w1.weight"]
        del weights[f"{prefix}.attention.wq.weight"]
        del weights[f"{prefix}.attention.wk.weight"]
        del weights[f"{prefix}.attention.wv.weight"]

    return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}

def gemma_to_megatron(
    weights: dict, size: int, source: str = "meta", version: int = 1
) -> dict:
    def permute(qkv_w):
        return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads, n_hidden_per_head)
        
    def rearrange_qkv(wq, wk, wv):
        wq = torch.split(wq, n_hidden_per_head, dim=0)
        wk = torch.split(wk, n_hidden_per_head, dim=0)
        wv = torch.split(wv, n_hidden_per_head, dim=0)
        assert len(wq) == n_heads
        assert len(wk) == n_kv_heads
        assert len(wv) == n_kv_heads
        n_qs_per_kv = n_heads // n_kv_heads
        w_qkv = []
        for i in range(n_kv_heads):
            w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
            w_qkv += [wk[i], wv[i]]
        return permute(torch.concat(w_qkv))

    # config
    n_layer = gemma_s2layer[size]
    hidden = gemma_s2hidden[size]
    n_heads = gemma_s2heads[size]
    n_hidden_per_head = gemma_headsize[size] #hidden // n_heads

    if size==2:
        n_kv_heads=1
    else:
        n_kv_heads=16

    # weights independent of layers
    embedding = {"word_embeddings.weight": weights["model.embed_tokens.weight"]}
    transformer = {"final_layernorm.weight": weights["model.norm.weight"]}
    lm_head = weights["lm_head.weight"]

    # get all the other weights
    for layer in trange(n_layer, desc="Converting weights"):
        prefix = f"layers.{layer}"
        prefix_old = f"model.layers.{layer}"
        # identical weights
        transformer[f"{prefix}.attention.dense.weight"] = weights[
            f"{prefix_old}.self_attn.o_proj.weight"
        ]
        transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
            f"{prefix_old}.post_attention_layernorm.weight"
        ]
        transformer[f"{prefix}.input_layernorm.weight"] = weights[
            f"{prefix_old}.input_layernorm.weight"
        ]
        transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
            f"{prefix_old}.mlp.down_proj.weight"
        ]
        # concatenate up, gate mlp weights
        transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
            [
                weights[f"{prefix_old}.mlp.up_proj.weight"],
                weights[f"{prefix_old}.mlp.gate_proj.weight"],
            ]
        )
        # finally, qkv requires serious manipulation to get right
        transformer[f"{prefix}.self_attention.query_key_value.weight"] = rearrange_qkv(
            weights[f"{prefix_old}.self_attn.q_proj.weight"],
            weights[f"{prefix_old}.self_attn.k_proj.weight"],
            weights[f"{prefix_old}.self_attn.v_proj.weight"],
        )

        # release references to original weights (free mem)
        del weights[f"{prefix_old}.mlp.up_proj.weight"]
        del weights[f"{prefix_old}.mlp.down_proj.weight"]
        del weights[f"{prefix_old}.self_attn.q_proj.weight"]
        del weights[f"{prefix_old}.self_attn.k_proj.weight"]
        del weights[f"{prefix_old}.self_attn.v_proj.weight"]

    return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}

def mistral_to_megatron(weights: dict, size: int) -> dict:
    assert size == 7

    def permute(qkv_w):
        # if source == "hf":
        # by default, we pull mistrals weights from huggingface
        return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads)
        # return qkv_w

    def rearrange_qkv(wq, wk, wv):
        wq = torch.split(wq, n_hidden_per_head, dim=0)
        wk = torch.split(wk, n_hidden_per_head, dim=0)
        wv = torch.split(wv, n_hidden_per_head, dim=0)
        assert len(wq) == n_heads
        assert len(wk) == n_kv_heads
        assert len(wv) == n_kv_heads
        n_qs_per_kv = n_heads // n_kv_heads
        w_qkv = []
        for i in range(n_kv_heads):
            w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
            w_qkv += [wk[i], wv[i]]
        return permute(torch.concat(w_qkv))

    # config
    if size == 7:
        n_layer = 32
        hidden = 4096
        n_heads = 32
        n_kv_heads = 8
    n_hidden_per_head = hidden // n_heads

    # weights independent of layers
    embedding = {"word_embeddings.weight": weights["model.embed_tokens.weight"]}
    transformer = {"final_layernorm.weight": weights["model.norm.weight"]}
    lm_head = weights["lm_head.weight"]

    # get all the other weights
    for layer in trange(n_layer, desc="Converting weights"):
        prefix = f"layers.{layer}"
        hf_prefix = f"model.{prefix}"
        # identical weights
        transformer[f"{prefix}.attention.dense.weight"] = weights[
            f"{hf_prefix}.self_attn.o_proj.weight"
        ]
        transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
            f"{hf_prefix}.post_attention_layernorm.weight"
        ]
        transformer[f"{prefix}.input_layernorm.weight"] = weights[
            f"{hf_prefix}.input_layernorm.weight"
        ]
        transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
            f"{hf_prefix}.mlp.down_proj.weight"
        ]
        # concatenate up, gate mlp weights
        transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
            [
                weights[f"{hf_prefix}.mlp.up_proj.weight"],  # w3
                weights[f"{hf_prefix}.mlp.gate_proj.weight"],  # w1
            ]
        )
        # finally, qkv requires serious manipulation to get right (probably same as llama-2)
        transformer[f"{prefix}.attention.query_key_value.weight"] = rearrange_qkv(
            weights[f"{hf_prefix}.self_attn.q_proj.weight"],
            weights[f"{hf_prefix}.self_attn.k_proj.weight"],
            weights[f"{hf_prefix}.self_attn.v_proj.weight"],
        )

        # release references to original weights (free mem)
        del weights[f"{hf_prefix}.mlp.up_proj.weight"]
        del weights[f"{hf_prefix}.mlp.gate_proj.weight"]
        del weights[f"{hf_prefix}.self_attn.q_proj.weight"]
        del weights[f"{hf_prefix}.self_attn.k_proj.weight"]
        del weights[f"{hf_prefix}.self_attn.v_proj.weight"]

    return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}


def main(
    model_name: str = "falcon",
    size: int = 7,
    out: Optional[Path] = None,
    cache_dir: Optional[Path] = None,
    model_path: Optional[str] = None,
):
    if out is None:
        out = Path(f"falcon{size}b_megatron.pt").absolute()

    # get weights from or specified directory
    if model_name == "falcon":
        print("Fetching weights from huggingface")
        if model_path is None:
            model_path = (f"tiiuae/falcon-{size}b",)
        model = AutoModelForCausalLM.from_pretrained(
            model_path, trust_remote_code=True, cache_dir=cache_dir
        )
        hf_weights = model.state_dict()
    elif model_name == "mistral":
        print("Fetching weights from huggingface")
        if model_path is None:
            model_path = "mistralai/Mistral-7B-v0.1"
        model = AutoModelForCausalLM.from_pretrained(
            model_path, trust_remote_code=True, cache_dir=cache_dir
        )
        hf_weights = model.state_dict()
    elif model_name == 'gemma':
        print("Fetching weights from huggingface")
        if size == 2:
            model_path = "google/gemma-2b"
        elif size == 7:
            model_path = "google/gemma-7b"
        model = GemmaForCausalLM.from_pretrained(
            model_path, trust_remote_code=True, cache_dir=cache_dir
        )
        hf_weights = model.state_dict()
    else:
        print("Getting llama...")
        version = 2 if "2" in model_name else 1
        hf_weights, llama_source = merge_llama(
            size, version, root_dir=cache_dir, model_path=model_path
        )

    # convert state dict to be megatron-compatible
    if model_name == "falcon":
        megatron_weights = falcon_to_megatron(hf_weights, size)
    elif model_name == "mistral":
        megatron_weights = mistral_to_megatron(hf_weights, size)
    elif model_name == "gemma":
        megatron_weights = gemma_to_megatron(hf_weights, size)
    else:
        megatron_weights = llama_to_megatron(
            hf_weights, size, llama_source, version=1 if model_name == "llama" else 2
        )

    # save converted weights in specified out
    (out / "release" / "mp_rank_00").mkdir(parents=True)

    if model_name in {"llama", "llama2", "llama3"} and llama_source == "hf":
        tokenizer = None
        if model_path is not None:
            try:
                if model_name == "llama2":
                    tokenizer = LlamaTokenizer.from_pretrained(
                        model_path, cache_dir=cache_dir)
                else:
                    tokenizer = AutoTokenizer.from_pretrained(
                        model_path, cache_dir=cache_dir)
            except OSError:
                warnings.warn(
                    f"Model path {model_path} does not have a "
                    "tokenizer, using default tokenizer instead"
                )
        if tokenizer is None:
            if model_name == "llama2":
                name = "meta-llama/Llama-2-7b-hf"
            elif model_name == "llama3":
                name = "meta-llama/Llama-3-8b"
            else:
                name = "decapoda-research/llama-7b-hf"
            tokenizer = LlamaTokenizer.from_pretrained(name, cache_dir=cache_dir)

        if model_name!="llama3":
            token_path = out / "tokenizer.model"
            vocab_file = tokenizer.vocab_file
            shutil.copy(vocab_file, token_path)
            print("Saved tokenizer.model in", token_path)
    elif model_name == "mistral":
        tokenizer = None
        if model_path is not None:
            try:
                tokenizer = LlamaTokenizer.from_pretrained(
                    model_path, cache_dir=cache_dir
                )
            except OSError:
                warnings.warn(
                    f"Model path {model_path} does not have a "
                    "tokenizer, using default tokenizer instead"
                )
        if tokenizer is None:
            tokenizer = LlamaTokenizer.from_pretrained(
                "mistralai/Mistral-7B-v0.1", cache_dir=cache_dir
            )
        token_path = out / "tokenizer.model"
        vocab_file = tokenizer.vocab_file
        shutil.copy(vocab_file, token_path)
        print("Saved tokenizer.model in", token_path)
    elif model_name == "gemma":
        tokenizer = None
        if model_path is not None:
            try:
                tokenizer = GemmaTokenizer.from_pretrained(
                    model_path, cache_dir=cache_dir
                )
            except OSError:
                warnings.warn(
                    f"Model path {model_path} does not have a "
                    "tokenizer, using default tokenizer instead"
                )
        if tokenizer is None:
            tokenizer = GemmaTokenizer.from_pretrained(
                "google/gemma-2b", cache_dir=cache_dir
            )
        token_path = out / "tokenizer.model"
        vocab_file = tokenizer.vocab_file
        shutil.copy(vocab_file, token_path)
        print("Saved tokenizer.model in", token_path)

    # set args
    dtype = megatron_weights["embedding"]["word_embeddings.weight"].dtype
    if model_name == "falcon":
        if size == 7:
            args = {
                "num_layers": 32,
                "hidden_size": 4544,
                "num_attention_heads": 71,
                "num_attention_heads_kv": 1,
            }
        else:
            args = {
                "num_layers": 60,
                "hidden_size": 8192,
                "num_attention_heads": 128,
                "num_attention_heads_kv": 8,
                "parallel_layernorm": True,
            }
        args.update(
            {
                "tokenizer_type": "FalconTokenizer",
                "use_flash_attn": True,
                "hidden_dropout": 0.0,
                "parallel_attn": True,
                "max_position_embeddings": 2048,
                "seq_length": 2048,
            }
        )
    elif model_name == "mistral":
        assert size == 7
        # mistral-7b mostly uses the same args as llama-7b
        # https://huggingface.co/mistralai/Mistral-7B-v0.1/blob/main/config.json
        args = {
            "num_layers": 32,
            "hidden_size": 4096,
            "num_attention_heads": 32,
            "num_attention_heads_kv": 8,  # except this - GroupedAttention
            "ffn_hidden_size": 14336,  # except this
            "parallel_attn": False,
            "make_vocab_size_divisible_by": 128,
            "glu_activation": "swiglu",  # == silu
            "padded_vocab_size": 32000,
            "use_rms_norm": True,
            "tie_embed_logits": False,
            "tokenizer_type": "SentencePieceTokenizer",
            "max_position_embeddings": 32768,
            "seq_length": 32768,
            "layernorm_epsilon": 1e-5,
            "rope_theta": 10000.0,
            "sliding_window_size": 4096,
        }
    elif model_name == "gemma":
        args = {
                "num_layers": gemma_s2layer[size],
                "hidden_size": gemma_s2hidden[size],
                "num_attention_heads": gemma_s2heads[size],
                "ffn_hidden_size": gemma_s2dense[size],
                "head_dim": gemma_headsize[size],
                "parallel_attn": False,
                "make_vocab_size_divisible_by": 128,
                "glu_activation": "geglu", 
                "padded_vocab_size": 256000,
                "use_rms_norm": True,
                "tie_embed_logits": True,
                "tokenizer_type": "SentencePieceTokenizer",
                "max_position_embeddings": 8192,
                "seq_length": 8192,
                "layernorm_epsilon": 1e-6,
                "rope_theta": 10000.0,
                "sliding_window_size": 4096,
            }
        if size==2:
            args.update(
                {
                "num_attention_heads_kv": 1,
                }
            )
        elif size==7:
            args.update(
                {
                "num_attention_heads_kv": 16,
                }
            )

    else:  # llama1, llama2, codellama
        make_vocab_size_divisible_by = 64
        padded_vocab_size = 37005
        # if len(tokenizer) % make_vocab_size_divisible_by == 0:
        #    padded_vocab_size = len(tokenizer)
        # else:
        #    padded_vocab_size = len(tokenizer) + (make_vocab_size_divisible_by - (len(tokenizer) % make_vocab_size_divisible_by))
        args = {
            "num_layers": llama_s2layer[size],
            "hidden_size": llama_s2hidden[size],
            "num_attention_heads": llama_s2heads[size],
            "ffn_hidden_size": llama_s2dense[size],
            "parallel_attn": False,
            "make_vocab_size_divisible_by": make_vocab_size_divisible_by,  # changed to accommodate for extend32
            "glu_activation": "swiglu",
            "padded_vocab_size": padded_vocab_size,
            "use_rms_norm": True,
            "tie_embed_logits": False,
            "tokenizer_type": "SentencePieceTokenizer",
        }
        if model_name == "llama":
            args.update(
                {
                    "max_position_embeddings": 2048,
                    "seq_length": 2048,
                    "layernorm_epsilon": 1e-6,
                }
            )
        elif model_name == "llama2":
            if size==1:
                args.update(
                    {
                    "num_attention_heads_kv": 4,
                    "max_position_embeddings": 2048,
                    "seq_length": 2048,
                    "layernorm_epsilon": 1e-5,
                    }
                )

            args.update(
                {
                    "max_position_embeddings": 4096,
                    "seq_length": 4096,
                    "layernorm_epsilon": 1e-5,
                }
            )
            if size >= 34:
                args.update({"num_attention_heads_kv": 8})
        elif model_name == "llama3":
            args.update(
                {
                    "num_attention_heads_kv": 8,
                    "max_position_embeddings": 8192,
                    "seq_length": 8192,
                    "layernorm_epsilon": 1e-6,
                    "rope_theta": 500000,
                    "padded_vocab_size": 128256
                }
            )
        elif model_name == "codellama":
            args.update(
                {
                    "max_position_embeddings": 16384,
                    "seq_length": 16384,
                    "layernorm_epsilon": 1e-5,
                    "rope_theta": 1e6,
                }
            )
            if size >= 34:
                args.update({"num_attention_heads_kv": 8})
            if size < 34 and not re.match(r"CodeLlama-\d+b-Python", cache_dir):
                args.update({"padded_vocab_size": 32016})
        else:
            sys.exit(
                f"Model name has to be llama, llama2 or codellama, not {model_name}."
            )

    args.update(
        {
            "tensor_model_parallel_size": 1,
            "pipeline_model_parallel_size": 1,
            "iteration": "release",
            "bias_gelu_fusion": False,
            "bias_droput_fusion": False,
            "position_embedding_type": "rotary",
        }
    )

    with open(out / "latest_checkpointed_iteration.txt", "w+") as f:
        f.write("release")
    final_dict = {
        "iteration": "release",
        "model": {"language_model": megatron_weights},
        "checkpoint_version": 3.0,
        "args": Namespace(**args),
    }
    torch.save(final_dict, out / "release" / "mp_rank_00" / "model_optim_rng.pt")
    print("Saved weights in", out)

    print("Done")


if __name__ == "__main__":
    parser = ArgumentParser(
        description="Convert Huggingface llama or falcon weights to "
        "megatron-compatible weights"
    )
    parser.add_argument(
        "model", choices={"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}
    )
    parser.add_argument(
        "--size",
        default=7,
        choices={1, 2, 7, 8, 13, 30, 34, 40, 65, 70},
        type=int,
        help="The size of the model",
    )
    parser.add_argument(
        "--out",
        type=Path,
        help="Directory to store the megatron weights (as checkpoint)",
    )
    parser.add_argument(
        "--model-path",
        help="Sets model_name_or_path when fetching weights from huggingface",
    )
    parser.add_argument(
        "--cache-dir",
        type=Path,
        help=(
            "Directory to use as cache for the huggingface "
            "weights, or in case of the llama model, the path "
            "of the weights privided Meta"
        ),
    )
    args = parser.parse_args()

    # small arg verification
    if args.model == "falcon":
        assert args.size in {7, 40}
    elif args.model == "llama":
        assert args.size in {7, 13, 30, 65}
    elif args.model == "codellama":
        assert args.size in {7, 13, 34}
    elif args.model == "mistral":
        assert args.size in {7}
    elif args.model == "gemma":
        assert args.size in {2, 7}
    else:
        assert args.size in {1, 7, 8, 13, 70}

    main(args.model, args.size, args.out, args.cache_dir, args.model_path)