File size: 1,387 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/bin/bash

GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))

DATA_PATH=<Specify path and file prefix>_text_sentence
VOCAB_FILE=<Specify path to vocab.txt>
CHECKPOINT_PATH=<Specify path>

DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"

python -m torch.distributed.launch $DISTRIBUTED_ARGS \
       pretrain_bert.py \
       --tensor_model_parallel_size 2 \
       --pipeline_model_parallel_size 2 \
       --num_layers 24 \
       --hidden_size 1024 \
       --num_attention_heads 16 \
       --micro_batch_size 2 \
       --global_batch_size 16 \
       --seq_length 512 \
       --max_position_embeddings 512 \
       --train_iters 1000000 \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data_path $DATA_PATH \
       --vocab_file $VOCAB_FILE \
       --data_impl mmap \
       --split 949,50,1 \
       --distributed_backend nccl \
       --lr 0.0001 \
       --lr_decay_style linear \
       --min_lr 1.0e-5 \
       --lr_decay_iters 990000 \
       --weight_decay 1e-2 \
       --clip_grad 1.0 \
       --lr_warmup_fraction .01 \
       --log_interval 100 \
       --save_interval 10000 \
       --eval_interval 1000 \
       --eval_iters 10 \
       --fp16