File size: 1,387 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
#!/bin/bash
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DATA_PATH=<Specify path and file prefix>_text_sentence
VOCAB_FILE=<Specify path to vocab.txt>
CHECKPOINT_PATH=<Specify path>
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_bert.py \
--tensor_model_parallel_size 2 \
--pipeline_model_parallel_size 2 \
--num_layers 24 \
--hidden_size 1024 \
--num_attention_heads 16 \
--micro_batch_size 2 \
--global_batch_size 16 \
--seq_length 512 \
--max_position_embeddings 512 \
--train_iters 1000000 \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data_path $DATA_PATH \
--vocab_file $VOCAB_FILE \
--data_impl mmap \
--split 949,50,1 \
--distributed_backend nccl \
--lr 0.0001 \
--lr_decay_style linear \
--min_lr 1.0e-5 \
--lr_decay_iters 990000 \
--weight_decay 1e-2 \
--clip_grad 1.0 \
--lr_warmup_fraction .01 \
--log_interval 100 \
--save_interval 10000 \
--eval_interval 1000 \
--eval_iters 10 \
--fp16
|