File size: 9,428 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""Fine-tune gpt, llama or falcon"""

import datetime as dt
from functools import partial

import torch

from megatron import get_args, get_counters, get_timers, get_tokenizer, print_rank_0
from megatron.core import tensor_parallel
from megatron.core.parallel_state import get_data_parallel_group
from megatron.data.gpt_dataset import (
    build_train_valid_test_datasets as gpt_build_datasets,
)
from megatron.data.instruction_dataset import (
    build_train_valid_test_datasets as instruct_build_datasets,
)
from megatron.data.instruction_dataset import instruction_collator
from megatron.initialize import initialize_megatron
from megatron.metrics import MetricInput, get_metric
from megatron.model import (
    FalconModel,
    GPTModel,
    LlamaModel,
    MistralModel,
    ModelType,
    GemmaModel,
)
from megatron.training import pretrain
from megatron.utils import (
    average_losses_across_data_parallel_group,
    get_ltor_masks_and_position_ids,
)

##
# Model provider utilities
##


def model_provider(pre_process: bool = True, post_process: bool = True):
    """Build the model."""

    print_rank_0("Building model ...")

    args = get_args()
    if args.model_name == "gpt":
        cls = GPTModel
    elif args.model_name == "falcon":
        cls = FalconModel
    elif args.model_name in {"llama", "llama2", "llama3", "codellama"}:
        cls = partial(LlamaModel, version=1 if args.model_name == "llama" else 2)
    elif args.model_name == "gemma":
        cls = GemmaModel
    elif args.model_name == "mistral":
        cls = MistralModel
        if args.sliding_window_size != 4096:
            print_rank_0(
                "Mistral uses sliding window attention (set sliding_window=4096)"
            )
            args.sliding_window_size = 4096
    else:
        raise KeyError(f"Unkown model {args.model_name}")

    if isinstance(args.model_type, ModelType):
        model_type = args.model_type
    elif args.model_type == "encoder_or_decoder":
        model_type = ModelType.encoder_or_decoder
    elif args.model_type == "encoder_and_decoder":
        model_type = ModelType.encoder_and_decoder
    else:
        raise KeyError(f"Unsupported model_type {args.model_type}")

    model = cls(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process,
        model_type=model_type,
    )
    return model


##
# Dataset utilities
##


# Heavily inspired by Andreas Köpf: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
def get_attention_mask_and_position_ids(data, attention_mask):
    """Build causal attention masks and position id for left to right model.
    Builds a (batch, 1, seq, seq)-sized binary causal attention mask from
    a (batch, seq)-sized attention mask specifying.
    If any value in the input attention_mask is < 0.5, the output
    attention mask will mask this position for every token, i.e. out[i, 0, :, j] = True
    if in[i, j] < 0.5.
    Returns attention_mask, position_ids"""

    # Extract batch size and sequence length.
    micro_batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    att_mask_batch = micro_batch_size
    attention_mask = (
        attention_mask.unsqueeze(1)
        .expand(micro_batch_size, seq_length, seq_length)
        .to(data.device)
    )
    attention_mask = torch.tril(attention_mask).view(
        att_mask_batch, 1, seq_length, seq_length
    )

    # Convert attention mask to binary, True entries will masked
    attention_mask = attention_mask < 0.5

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)

    return attention_mask, position_ids


def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    datatype = torch.int64
    if args.data_type == "gpt":
        keys = ["text"]
    elif args.data_type == "instruction":
        keys = ["text", "attention_mask", "assistant_mask", "pad_mask"]
    else:
        raise KeyError(f"Unknown dataset type {args.data_type}")

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b["text"]
    labels = tokens[:, 1:].contiguous()
    tokens = tokens[:, :-1].contiguous()

    # Update tokens counter.
    counters = get_counters()
    n_tokens = torch.tensor(tokens.numel(), device=tokens.device)
    if args.data_parallel_size == 1:
        n_tokens = n_tokens.item()
    else:
        group = get_data_parallel_group()
        torch.distributed.all_reduce(
            n_tokens, op=torch.distributed.ReduceOp.SUM, group=group
        )
        n_tokens = n_tokens.item()
    counters["tokens"] += n_tokens

    if args.data_type == "gpt":
        # Get the masks and position ids.
        attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
            tokens,
            tokenizer.eod,
            args.reset_position_ids,
            args.reset_attention_mask,
            args.eod_mask_loss,
        )

        return tokens, labels, loss_mask, attention_mask, position_ids

    # Instruction dataset.
    # Heavily inspired by Andreas Köpf: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
    attention_mask = data_b["attention_mask"][:, :-1]
    assistant_mask = data_b["assistant_mask"][:, 1:].to(tokens.device)
    pad_mask = data_b["pad_mask"][:, 1:].to(tokens.device)
    loss_mask = torch.full(
        labels.size(), args.scalar_loss_mask, dtype=torch.float, device=tokens.device
    )
    loss_mask[assistant_mask == 1] = 1.0
    loss_mask[pad_mask == 1] = 0.0
    attention_mask, position_ids = get_attention_mask_and_position_ids(
        tokens, attention_mask
    )

    return tokens, labels, loss_mask, attention_mask, position_ids


def data_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    if args.data_type == "gpt":
        builder = gpt_build_datasets
    elif args.data_type == "instruction":
        builder = instruct_build_datasets

    print_rank_0("> building train, validation, and test datasets ...")
    train_ds, valid_ds, test_ds = builder(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
        train_data_prefix=args.train_data_path,
        valid_data_prefix=args.valid_data_path,
        test_data_prefix=args.test_data_path,
    )
    print_rank_0("> finished creating datasets ...")

    return train_ds, valid_ds, test_ds


##
# Loss and forward
##


def loss_func(is_training, batch, outputs):
    loss_mask = batch[2]
    losses, logits = outputs
    losses = losses.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])
    out_dict = {"lm loss": averaged_loss[0]}

    # Calculate other metrics
    if not is_training:
        inputs = MetricInput(batch, logits, averaged_loss[0])
        args = get_args()
        for metric in map(get_metric, args.metrics):
            out_dict.update(metric(inputs))

    return loss, out_dict


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers("batch-generator", log_level=2).start()
    batch = get_batch(data_iterator)
    tokens, labels, loss_mask, attention_mask, position_ids = batch
    timers("batch-generator").stop()

    output_tensor = model(tokens, position_ids, attention_mask, labels=labels)
    return output_tensor, partial(loss_func, model.training, batch)


##
# Main
##


def extra_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title="validation set")
    group.add_argument(
        "--model_name",
        choices={
            "gpt",
            "llama",
            "falcon",
            "llama2",
            "llama3",
            "codellama",
            "mistral",
            "gemma",
        },
        default="gpt",
    )
    group.add_argument(
        "--model_type",
        choices={"encoder_or_decoder", "encoder_and_decoder"},
        default="encoder_or_decoder",
    )
    group.add_argument("--data_type", choices={"gpt", "instruction"}, default="gpt")
    group.add_argument("--log_learning_rate_to_tensorboard", type=bool, default=True)
    group.add_argument("--log_loss_scale_to_tensorboard", type=bool, default=True)
    return parser


if __name__ == "__main__":
    args_defaults = {"tokenizer_type": "GPT2BPETokenizer"}
    initialize_megatron(extra_args, args_defaults)
    args = get_args()

    if args.data_type == "gpt":
        collate_fn = None
    else:
        collate_fn = instruction_collator

    pretrain(
        args,
        data_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        collate_fn=collate_fn,
    )
    print(f"Done {dt.datetime.now(dt.timezone.utc)}")