File size: 29,059 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Input/output checkpointing."""
import os
import random
import sys
import numpy as np
import torch
from megatron import update_num_microbatches
from megatron.core import mpu, tensor_parallel
from .global_vars import get_args
from .utils import print_rank_0, unwrap_model
_CHECKPOINT_VERSION = None
def set_checkpoint_version(value):
global _CHECKPOINT_VERSION
if _CHECKPOINT_VERSION is not None:
assert _CHECKPOINT_VERSION == value, "checkpoint versions do not match"
_CHECKPOINT_VERSION = value
def get_checkpoint_version():
global _CHECKPOINT_VERSION
return _CHECKPOINT_VERSION
def check_checkpoint_args(checkpoint_args):
"""Ensure fixed arguments for a model are the same for the input
arguments and the one retrieved from checkpoint."""
args = get_args()
def _compare(arg_name, old_arg_name=None):
if old_arg_name is not None:
checkpoint_value = getattr(checkpoint_args, old_arg_name)
else:
checkpoint_value = getattr(checkpoint_args, arg_name)
args_value = getattr(args, arg_name)
error_message = (
"{} value from checkpoint ({}) is not equal to the "
"input argument value ({}).".format(arg_name, checkpoint_value, args_value)
)
#assert checkpoint_value == args_value, error_message
_compare("num_layers")
_compare("hidden_size")
_compare("num_attention_heads")
if args.vocab_file:
_compare("max_position_embeddings")
_compare("make_vocab_size_divisible_by")
_compare("padded_vocab_size")
_compare("tokenizer_type")
if args.data_parallel_random_init:
_compare("data_parallel_random_init")
if get_checkpoint_version() < 3.0:
_compare("tensor_model_parallel_size", old_arg_name="model_parallel_size")
if get_checkpoint_version() >= 3.0:
_compare("tensor_model_parallel_size")
_compare("pipeline_model_parallel_size")
def ensure_directory_exists(filename):
"""Build filename's path if it does not already exists."""
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname)
def get_checkpoint_name(
checkpoints_path,
iteration,
release=False,
pipeline_parallel=None,
tensor_rank=None,
pipeline_rank=None,
):
"""Determine the directory name for this rank's checkpoint."""
if release:
directory = "release"
else:
directory = "iter_{:07d}".format(iteration)
# Use both the tensor and pipeline MP rank.
if pipeline_parallel is None:
pipeline_parallel = mpu.get_pipeline_model_parallel_world_size() > 1
if tensor_rank is None:
tensor_rank = mpu.get_tensor_model_parallel_rank()
if pipeline_rank is None:
pipeline_rank = mpu.get_pipeline_model_parallel_rank()
# Use both the tensor and pipeline MP rank. If using the distributed
# optimizer, then the optimizer's path must additionally include the
# data parallel rank.
if not pipeline_parallel:
common_path = os.path.join(
checkpoints_path, directory, f"mp_rank_{tensor_rank:02d}"
)
else:
common_path = os.path.join(
checkpoints_path,
directory,
f"mp_rank_{tensor_rank:02d}_{pipeline_rank:03d}",
)
return os.path.join(common_path, "model_optim_rng.pt")
def get_checkpoint_names(
checkpoints_path,
iteration,
use_distributed_optimizer,
release=False,
pipeline_parallel=None,
tensor_rank=None,
pipeline_rank=None,
):
"""Determine the directory name for this rank's checkpoint."""
if release:
directory = "release"
else:
directory = "iter_{:07d}".format(iteration)
# Use both the tensor and pipeline MP rank.
if pipeline_parallel is None:
pipeline_parallel = mpu.get_pipeline_model_parallel_world_size() > 1
if tensor_rank is None:
tensor_rank = mpu.get_tensor_model_parallel_rank()
if pipeline_rank is None:
pipeline_rank = mpu.get_pipeline_model_parallel_rank()
# Use both the tensor and pipeline MP rank. If using the distributed
# optimizer, then the optimizer's path must additionally include the
# data parallel rank.
if not pipeline_parallel:
common_path = os.path.join(
checkpoints_path, directory, f"mp_rank_{tensor_rank:02d}"
)
else:
common_path = os.path.join(
checkpoints_path,
directory,
f"mp_rank_{tensor_rank:02d}_{pipeline_rank:03d}",
)
if use_distributed_optimizer:
model_name = os.path.join(common_path, "model_rng.pt")
optim_name = os.path.join(
common_path + "_%03d" % mpu.get_data_parallel_rank(), "optim.pt"
)
else:
model_name = optim_name = os.path.join(common_path, "model_optim_rng.pt")
return model_name, optim_name
def find_checkpoint_rank_0(
checkpoints_path, iteration, use_distributed_optimizer, release=False
):
"""Finds the checkpoint for rank 0 without knowing if we are using
pipeline parallelism or not.
Since the checkpoint naming scheme changes if pipeline parallelism
is present, we need to look for both naming schemes if we don't
know if the checkpoint has pipeline parallelism.
"""
# Look for checkpoint with no pipelining
filenames = get_checkpoint_names(
checkpoints_path,
iteration,
use_distributed_optimizer,
release,
pipeline_parallel=False,
tensor_rank=0,
pipeline_rank=0,
)
if os.path.isfile(filenames[0]):
return filenames
# Look for checkpoint with pipelining
filenames = get_checkpoint_names(
checkpoints_path,
iteration,
use_distributed_optimizer,
release,
pipeline_parallel=True,
tensor_rank=0,
pipeline_rank=0,
)
if os.path.isfile(filenames[0]):
return filenames
return None, None
def get_checkpoint_tracker_filename(checkpoints_path):
"""Tracker file rescords the latest chckpoint during
training to restart from."""
return os.path.join(checkpoints_path, "latest_checkpointed_iteration.txt")
def read_metadata(tracker_filename):
# Read the tracker file and either set the iteration or
# mark it as a release checkpoint.
iteration = 0
release = False
with open(tracker_filename, "r") as f:
metastring = f.read().strip()
try:
iteration = int(metastring)
except ValueError:
release = metastring == "release"
if not release:
print_rank_0(
"ERROR: Invalid metadata file {}. Exiting".format(tracker_filename)
)
sys.exit()
assert iteration > 0 or release, "error parsing metadata file {}".format(
tracker_filename
)
# Get the max iteration retrieved across the ranks.
if torch.distributed.is_initialized():
iters_cuda = torch.cuda.LongTensor([iteration])
torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
max_iter = iters_cuda[0].item()
# We should now have all the same iteration.
# If not, print a warning and chose the maximum
# iteration across all ranks.
if iteration != max_iter:
print(
"WARNING: on rank {} found iteration {} in the "
"metadata while max iteration across the ranks "
"is {}, replacing it with max iteration.".format(
rank, iteration, max_iter
),
flush=True,
)
else:
# When loading a checkpoint outside of training (for example,
# when editing it), we might not have torch distributed
# initialized, in this case, just assume we have the latest
max_iter = iteration
return max_iter, release
def get_rng_state():
"""collect rng state across data parallel ranks"""
args = get_args()
rng_state = {
"random_rng_state": random.getstate(),
"np_rng_state": np.random.get_state(),
"torch_rng_state": torch.get_rng_state(),
"cuda_rng_state": torch.cuda.get_rng_state(),
"rng_tracker_states": tensor_parallel.get_cuda_rng_tracker().get_states(),
}
rng_state_list = None
if (
torch.distributed.is_initialized()
and mpu.get_data_parallel_world_size() > 1
and args.data_parallel_random_init
):
rng_state_list = [None for i in range(mpu.get_data_parallel_world_size())]
torch.distributed.all_gather_object(
rng_state_list, rng_state, group=mpu.get_data_parallel_group()
)
else:
rng_state_list = [rng_state]
return rng_state_list
def save_checkpoint(iteration, model, optimizer, opt_param_scheduler):
"""Save a model checkpoint."""
args = get_args()
# Only rank zero of the data parallel writes to the disk.
model = unwrap_model(model)
release = iteration == "release"
if release:
print_rank_0(
"saving checkpoint marked as release to {}".format(iteration, args.save)
)
else:
print_rank_0(
"saving checkpoint at iteration {:7d} to {}".format(iteration, args.save)
)
# Collect rng state across data parallel ranks.
rng_state = get_rng_state()
# Checkpoint file names.
model_checkpoint_name, optim_checkpoint_name = get_checkpoint_names(
args.save, iteration, args.use_distributed_optimizer, release=release
)
# Collect args, model, RNG.
model_state_dict = {}
if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
# Arguments, iteration, and model.
model_state_dict["args"] = args
model_state_dict["checkpoint_version"] = 3.0
model_state_dict["iteration"] = iteration
if len(model) == 1:
model_state_dict["model"] = model[0].state_dict_for_save_checkpoint()
else:
for i in range(len(model)):
mpu.set_virtual_pipeline_model_parallel_rank(i)
model_state_dict["model%d" % i] = model[
i
].state_dict_for_save_checkpoint()
# RNG states.
if not args.no_save_rng:
model_state_dict["rng_state"] = rng_state
# Collect optimizer state. (Optimizer is saved separately from the model, due
# to the conflicting data pattern when using the distributed optimizer.)
optim_state_dict = {}
if not args.no_save_optim and (
not torch.distributed.is_initialized()
or mpu.get_data_parallel_rank() == 0
or args.use_distributed_optimizer
):
# Optimizer stuff.
if optimizer is not None:
optim_state_dict["optimizer"] = optimizer.state_dict()
if opt_param_scheduler is not None:
optim_state_dict["opt_param_scheduler"] = opt_param_scheduler.state_dict()
# Save.
if args.use_distributed_optimizer:
# Save model separate from optimizer.
if model_state_dict:
ensure_directory_exists(model_checkpoint_name)
torch.save(model_state_dict, model_checkpoint_name)
if optim_state_dict:
ensure_directory_exists(optim_checkpoint_name)
torch.save(optim_state_dict, optim_checkpoint_name)
else:
# Save model and optimizer together.
state_dict = {**model_state_dict, **optim_state_dict}
if state_dict: # only saves if populated (i.e., inherits conditions above)
ensure_directory_exists(model_checkpoint_name)
torch.save(state_dict, model_checkpoint_name)
# Wait so everyone is done (necessary)
if torch.distributed.is_initialized():
torch.distributed.barrier()
if release:
print_rank_0(
" successfully saved checkpoint marked as release to {}".format(
iteration, args.save
)
)
else:
print_rank_0(
" successfully saved checkpoint at iteration {:7d} to {}".format(
iteration, args.save
)
)
# And update the latest iteration
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
tracker_filename = get_checkpoint_tracker_filename(args.save)
with open(tracker_filename, "w") as f:
f.write(str(iteration))
# Wait so everyone is done (not necessary)
if torch.distributed.is_initialized():
torch.distributed.barrier()
def _transpose_first_dim(t, num_splits, num_splits_first, model):
input_shape = t.size()
# We use a self_attention module but the values extracted aren't
# specific to self attention so should work for cross attention as well
while hasattr(model, "module"):
model = model.module
attention_module = model.language_model.encoder.layers[0].self_attention
hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
num_attention_heads_per_partition = (
attention_module.num_attention_heads_per_partition
)
if num_splits_first:
"""[num_splits * np * hn, h]
-->(view) [num_splits, np, hn, h]
-->(tranpose) [np, num_splits, hn, h]
-->(view) [np * num_splits * hn, h]"""
intermediate_shape = (
num_splits,
num_attention_heads_per_partition,
hidden_size_per_attention_head,
) + input_shape[1:]
t = t.view(*intermediate_shape)
t = t.transpose(0, 1).contiguous()
else:
"""[np * hn * num_splits, h]
-->(view) [np, hn, num_splits, h]
-->(tranpose) [np, num_splits, hn, h]
-->(view) [np * num_splits * hn, h]"""
intermediate_shape = (
num_attention_heads_per_partition,
hidden_size_per_attention_head,
num_splits,
) + input_shape[1:]
t = t.view(*intermediate_shape)
t = t.transpose(1, 2).contiguous()
t = t.view(*input_shape)
return t
def fix_query_key_value_ordering(model, checkpoint_version):
"""Fix up query/key/value matrix ordering if checkpoint
version is smaller than 2.0
"""
if checkpoint_version < 2.0:
if isinstance(model, list):
assert len(model) == 1
model = model[0]
for name, param in model.named_parameters():
if name.endswith((".query_key_value.weight", ".query_key_value.bias")):
# multiquery attn does not require transposition
args = get_args()
if args.num_attention_heads_kv != args.num_attention_heads:
continue
if checkpoint_version == 0:
fixed_param = _transpose_first_dim(param.data, 3, True, model)
elif checkpoint_version == 1.0:
fixed_param = _transpose_first_dim(param.data, 3, False, model)
else:
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
sys.exit()
param.data.copy_(fixed_param)
if name.endswith((".key_value.weight", ".key_value.bias")):
if checkpoint_version == 0:
fixed_param = _transpose_first_dim(param.data, 2, True, model)
elif checkpoint_version == 1.0:
fixed_param = _transpose_first_dim(param.data, 2, False, model)
else:
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
sys.exit()
param.data.copy_(fixed_param)
print_rank_0(
" succesfully fixed query-key-values ordering for"
" checkpoint version {}".format(checkpoint_version)
)
def _load_base_checkpoint(load_dir, use_distributed_optimizer, rank0=False):
"""Load the base state_dict from the given directory
If rank0 is true, just loads rank 0 checkpoint, ignoring arguments.
"""
# Read the tracker file and set the iteration.
tracker_filename = get_checkpoint_tracker_filename(load_dir)
# If no tracker file, return nothing
if not os.path.isfile(tracker_filename):
if not rank0:
print_rank_0(
"WARNING: could not find the metadata file {} ".format(tracker_filename)
)
print_rank_0(
" will not load any checkpoints and will start from " "random"
)
return None, None, False
# Otherwise, read the tracker file and either set the iteration or
# mark it as a release checkpoint.
iteration, release = read_metadata(tracker_filename)
# Checkpoint.
if rank0:
checkpoint_names = find_checkpoint_rank_0(
load_dir, iteration, use_distributed_optimizer, release
)
else:
checkpoint_names = get_checkpoint_names(
load_dir, iteration, use_distributed_optimizer, release
)
if release:
print_rank_0(f" loading release checkpoint from {load_dir}")
else:
print_rank_0(
f" loading checkpoint from {load_dir} at iteration {iteration}"
)
model_checkpoint_name, optim_checkpoint_name = checkpoint_names
# Load the checkpoint.
try:
model_state_dict = torch.load(model_checkpoint_name, map_location="cpu")
if use_distributed_optimizer:
optim_state_dict = torch.load(optim_checkpoint_name, map_location="cpu")
else:
optim_state_dict = model_state_dict
except ModuleNotFoundError:
from megatron.fp16_deprecated import loss_scaler
# For backward compatibility.
if not rank0:
print_rank_0(" > deserializing using the old code structure ...")
sys.modules["fp16.loss_scaler"] = sys.modules[
"megatron.fp16_deprecated.loss_scaler"
]
sys.modules["megatron.fp16.loss_scaler"] = sys.modules[
"megatron.fp16_deprecated.loss_scaler"
]
model_state_dict = torch.load(model_checkpoint_name, map_location="cpu")
optim_state_dict = torch.load(optim_checkpoint_name, map_location="cpu")
sys.modules.pop("fp16.loss_scaler", None)
sys.modules.pop("megatron.fp16.loss_scaler", None)
except BaseException as e:
print_rank_0("could not load the checkpoint")
print_rank_0(e)
sys.exit()
return model_state_dict, optim_state_dict, release
def load_args_from_checkpoint(args, load_arg="load"):
"""Set required arguments from the checkpoint specified in the
arguments.
Will overwrite arguments that have a non-None default value, but
will leave any arguments that default to None as set.
Returns the same args NameSpace with the new values added/updated.
If no checkpoint is specified in args, or if the checkpoint is
there but invalid, the arguments will not be modified
"""
load_dir = getattr(args, load_arg)
if load_dir is None:
print_rank_0("No load directory specified, using provided arguments.")
return args
model_state_dict, optim_state_dict, release = _load_base_checkpoint(
load_dir, use_distributed_optimizer=args.use_distributed_optimizer, rank0=True
)
# For args we only care about model state dict
state_dict = model_state_dict
if not state_dict:
print_rank_0(
"Checkpoint not found to provide arguments, using provided arguments."
)
return args
if "args" not in state_dict:
print_rank_0(
"Checkpoint provided does not have arguments saved, using provided arguments."
)
return args
checkpoint_args = state_dict["args"]
checkpoint_version = state_dict.get("checkpoint_version", 0)
args.iteration = state_dict["iteration"]
def _set_arg(arg_name, old_arg_name=None, force=False):
if not force and getattr(args, arg_name, None) is not None:
return
if old_arg_name is not None:
checkpoint_value = getattr(checkpoint_args, old_arg_name, None)
else:
checkpoint_value = getattr(checkpoint_args, arg_name, None)
if checkpoint_value is not None:
print_rank_0(f"Setting {arg_name} to {checkpoint_value} from checkpoint")
setattr(args, arg_name, checkpoint_value)
_set_arg("num_layers")
_set_arg("hidden_size")
_set_arg("ffn_hidden_size")
_set_arg("seq_length")
_set_arg("num_attention_heads")
_set_arg("kv_channels")
_set_arg("max_position_embeddings")
_set_arg("tokenizer_type")
_set_arg("padded_vocab_size", force=True)
_set_arg("position_embedding_type", force=True)
_set_arg("num_attention_heads_kv")
_set_arg("bias_droput_fusion")
_set_arg("bias_gelu_fusion")
_set_arg("hidden_dropout")
_set_arg("parallel_attn", force=True)
_set_arg("parallel_layernorm", force=True)
_set_arg("use_flash_attn")
_set_arg("use_rms_norm", force=True)
_set_arg("ffn_hidden_size")
_set_arg("glu_activation")
_set_arg("tie_embed_logits", force=True)
_set_arg("make_vocab_size_divisible_by", force=True)
_set_arg("train_iters")
_set_arg("sliding_window_size")
if checkpoint_version < 3.0:
_set_arg("tensor_model_parallel_size", "model_parallel_size")
else:
_set_arg("tensor_model_parallel_size", force=True)
_set_arg("pipeline_model_parallel_size", force=True)
_set_arg("num_layers_per_virtual_pipeline_stage")
return args
def load_checkpoint(
model, optimizer, opt_param_scheduler, load_arg="load", strict=True
):
"""Load a model checkpoint and return the iteration.
strict (bool): whether to strictly enforce that the keys in
:attr:`state_dict` of the checkpoint match the names of
parameters and buffers in model.
"""
args = get_args()
load_dir = getattr(args, load_arg)
model = unwrap_model(model)
model_state_dict, optim_state_dict, release = _load_base_checkpoint(
load_dir, use_distributed_optimizer=args.use_distributed_optimizer, rank0=False
)
if model_state_dict is None:
return 0
# set checkpoint version
set_checkpoint_version(model_state_dict.get("checkpoint_version", 0))
# Set iteration.
if args.finetune or release or args.annealing:
iteration = 0
else:
try:
iteration = model_state_dict["iteration"]
except KeyError:
try: # Backward compatible with older checkpoints
iteration = model_state_dict["total_iters"]
except KeyError:
print_rank_0(
"A metadata file exists but unable to load "
"iteration from checkpoint {}, exiting".format(checkpoint_name)
)
sys.exit()
# Check arguments.
assert args.consumed_train_samples == 0
assert args.consumed_valid_samples == 0
if "args" in model_state_dict and not args.finetune and not args.annealing:
checkpoint_args = model_state_dict["args"]
check_checkpoint_args(checkpoint_args)
args.consumed_train_samples = getattr(
checkpoint_args, "consumed_train_samples", 0
)
update_num_microbatches(consumed_samples=args.consumed_train_samples)
args.consumed_valid_samples = getattr(
checkpoint_args, "consumed_valid_samples", 0
)
else:
print_rank_0("could not find arguments in the checkpoint ...")
# Model.
if len(model) == 1:
model[0].load_state_dict(model_state_dict["model"], strict=strict)
else:
for i in range(len(model)):
mpu.set_virtual_pipeline_model_parallel_rank(i)
model[i].load_state_dict(model_state_dict["model%d" % i], strict=strict)
# Fix up query/key/value matrix ordering if needed
checkpoint_version = get_checkpoint_version()
print_rank_0(f" checkpoint version {checkpoint_version}")
fix_query_key_value_ordering(model, checkpoint_version)
# Optimizer.
if not release and not args.finetune and not args.no_load_optim:
try:
if optimizer is not None:
optimizer.load_state_dict(optim_state_dict["optimizer"])
if opt_param_scheduler is not None and not args.annealing:
if "lr_scheduler" in optim_state_dict: # backward compatbility
opt_param_scheduler.load_state_dict(
optim_state_dict["lr_scheduler"]
)
else:
opt_param_scheduler.load_state_dict(
optim_state_dict["opt_param_scheduler"]
)
except KeyError:
print_rank_0(
"Unable to load optimizer from checkpoint {}. "
"Specify --no_load_optim or --finetune to prevent "
"attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name)
)
sys.exit()
else:
if args.fp16 and optimizer is not None:
optimizer.reload_model_params()
# rng states.
if not release and not args.finetune and not args.no_load_rng:
try:
if "rng_state" in model_state_dict:
# access rng_state for data parallel rank
if args.data_parallel_random_init:
rng_state = model_state_dict["rng_state"][
mpu.get_data_parallel_rank()
]
else:
rng_state = model_state_dict["rng_state"][0]
random.setstate(rng_state["random_rng_state"])
np.random.set_state(rng_state["np_rng_state"])
torch.set_rng_state(rng_state["torch_rng_state"])
torch.cuda.set_rng_state(rng_state["cuda_rng_state"])
# Check for empty states array
if not rng_state["rng_tracker_states"]:
raise KeyError
tensor_parallel.get_cuda_rng_tracker().set_states(
rng_state["rng_tracker_states"]
)
else: # backward compatability
random.setstate(model_state_dict["random_rng_state"])
np.random.set_state(model_state_dict["np_rng_state"])
torch.set_rng_state(model_state_dict["torch_rng_state"])
torch.cuda.set_rng_state(model_state_dict["cuda_rng_state"])
# Check for empty states array
if not model_state_dict["rng_tracker_states"]:
raise KeyError
tensor_parallel.get_cuda_rng_tracker().set_states(
model_state_dict["rng_tracker_states"]
)
except KeyError:
print_rank_0(
"Unable to load rng state from checkpoint {}. "
"Specify --no_load_rng or --finetune to prevent "
"attempting to load the rng state, "
"exiting ...".format(checkpoint_name)
)
sys.exit()
# Some utilities want to load a checkpoint without distributed being initialized
if torch.distributed.is_initialized():
torch.distributed.barrier()
print_rank_0(
f" successfully loaded checkpoint from {args.load} "
f"at iteration {iteration}"
)
return iteration
def load_biencoder_checkpoint(
model, only_query_model=False, only_context_model=False, custom_load_path=None
):
"""
selectively load retrieval models for indexing/retrieving
from saved checkpoints
"""
args = get_args()
model = unwrap_model(model)
load_path = custom_load_path if custom_load_path is not None else args.load
tracker_filename = get_checkpoint_tracker_filename(load_path)
with open(tracker_filename, "r") as f:
iteration = int(f.read().strip())
checkpoint_name, _ = get_checkpoint_names(
load_path, iteration, args.use_distributed_optimizer, release=False
)
if mpu.get_data_parallel_rank() == 0:
print(
"global rank {} is loading checkpoint {}".format(
torch.distributed.get_rank(), checkpoint_name
)
)
state_dict = torch.load(model_checkpoint_name, map_location="cpu")
ret_state_dict = state_dict["model"]
if only_query_model:
ret_state_dict.pop("context_model")
if only_context_model:
ret_state_dict.pop("query_model")
assert len(model) == 1
model[0].load_state_dict(ret_state_dict)
torch.distributed.barrier()
if mpu.get_data_parallel_rank() == 0:
print(" successfully loaded {}".format(checkpoint_name))
return model
|