File size: 7,553 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import time

import numpy as np
import torch

from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
from megatron import get_args, get_tokenizer, print_rank_0


def get_one_epoch_dataloader(dataset, micro_batch_size=None):
    """Specifically one epoch to be used in an indexing job."""
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    if micro_batch_size is None:
        micro_batch_size = args.micro_batch_size
    global_batch_size = micro_batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    # importantly, drop_last must be False to get all the data.
    assert False, 'DistributedBatchSampler deprecated, change the implementation'
    from megatron.data.samplers import DistributedBatchSampler
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=False,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


def get_ict_batch(data_iterator):
    # Items and their type.
    keys = ['query_tokens', 'query_pad_mask',
            'block_tokens', 'block_pad_mask', 'block_data']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)

    # Unpack.
    query_tokens = data_b['query_tokens'].long()
    query_pad_mask = data_b['query_pad_mask'].long()
    block_tokens = data_b['block_tokens'].long()
    block_pad_mask = data_b['block_pad_mask'].long()
    block_indices = data_b['block_data'].long()

    return query_tokens, query_pad_mask,\
           block_tokens, block_pad_mask, block_indices


def join_str_list(str_list):
    """Join a list of strings, handling spaces appropriately"""
    result = ""
    for s in str_list:
        if s.startswith("##"):
            result += s[2:]
        else:
            result += " " + s
    return result


class BlockSampleData(object):
    """A struct for fully describing a fixed-size block of data as used in REALM

    :param start_idx: for first sentence of the block
    :param end_idx: for last sentence of the block (may be partially truncated in sample construction)
    :param doc_idx: the index of the document from which the block comes in the original indexed dataset
    :param block_idx: a unique integer identifier given to every block.
    """
    def __init__(self, start_idx, end_idx, doc_idx, block_idx):
        self.start_idx = start_idx
        self.end_idx = end_idx
        self.doc_idx = doc_idx
        self.block_idx = block_idx

    def as_array(self):
        return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64)

    def as_tuple(self):
        return self.start_idx, self.end_idx, self.doc_idx, self.block_idx


class BlockSamplesMapping(object):
    def __init__(self, mapping_array):
        # make sure that the array is compatible with BlockSampleData
        assert mapping_array.shape[1] == 4
        self.mapping_array = mapping_array

    def __len__(self):
        return self.mapping_array.shape[0]

    def __getitem__(self, idx):
        """Get the data associated with an indexed sample."""
        sample_data = BlockSampleData(*self.mapping_array[idx])
        return sample_data


def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs,
                              max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False):
    """Get samples mapping for a dataset over fixed size blocks. This function also requires
    a dataset of the titles for the source documents since their lengths must be taken into account.

    :return: samples_mapping (BlockSamplesMapping)
    """

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
    if use_one_sent_docs:
        indexmap_filename += '_1sentok'
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if mpu.get_data_parallel_rank() == 0 and \
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert block_dataset.doc_idx.dtype == np.int64
        assert block_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))

        from megatron.data import helpers
        mapping_array = helpers.build_blocks_mapping(
            block_dataset.doc_idx,
            block_dataset.sizes,
            title_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length - 3,  # account for added tokens
            seed,
            verbose,
            use_one_sent_docs)


        print_rank_0(' > done building samples index mapping')
        np.save(indexmap_filename, mapping_array, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()

    mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
    samples_mapping = BlockSamplesMapping(mapping_array)

    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        mapping_array.shape[0]))

    return samples_mapping