File size: 13,321 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import math

import torch
from torch.nn import LayerNorm

from megatron.model.enums import AttnMaskType
from megatron.model.fused_layer_norm import MixedFusedLayerNorm
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.utils import attention_mask_func
from megatron.fused_kernels import load


def test_load_fused_kernels():
    try:
        import fused_mix_prec_layer_norm_cuda
        import scaled_masked_softmax_cuda
        import scaled_upper_triang_masked_softmax_cuda
        import torch

        print("[Success] load_fused_kernels")
    except ImportError as e:
        print("[Fail] load_fused_kernels")
        raise e


def test_fused_softmax():
    bert = BertModel.from_pretrained("bert-base-cased").cuda().half()
    tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
    test_text = (
        "Hello. How are you? I am fine thank you and you? yes Good. "
        "hi hi hi hi hi hi hi hi hi hi hi hi hi"  # 32
    )

    tokens = tokenizer(
        [test_text] * 4,
        return_tensors="pt",
    )

    embedding_output = bert.embeddings(
        input_ids=tokens["input_ids"].cuda(),
        position_ids=None,
        token_type_ids=tokens["token_type_ids"].cuda(),
        inputs_embeds=None,
        past_key_values_length=0,
    )

    # (bsz, 1, 1, seq_len)
    mask = bert.get_extended_attention_mask(
        attention_mask=tokens["attention_mask"].cuda(),
        input_shape=tokens["input_ids"].shape,
        device=bert.device,
    )
    # (bsz, 1, seq_len, seq_len)
    mask = mask.repeat(1, 1, mask.size()[-1], 1)

    attention = bert.encoder.layer[0].attention.self
    key_layer = attention.transpose_for_scores(attention.key(embedding_output))
    query_layer = attention.transpose_for_scores(attention.query(embedding_output))

    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
    attention_scores /= math.sqrt(key_layer.size()[-1])

    fused_softmax = (
        FusedScaleMaskSoftmax(
            input_in_fp16=True,
            input_in_bf16=False,
            mask_func=attention_mask_func,
            scale=None,
            softmax_in_fp32=False,
            attn_mask_type=AttnMaskType.padding,
            scaled_masked_softmax_fusion=True,
        )
        .cuda()
        .half()
    )

    fused_softmax_output = fused_softmax(
        attention_scores,
        (mask != 0),
    )

    torch_softmax = (
        FusedScaleMaskSoftmax(
            input_in_fp16=True,
            input_in_bf16=False,
            mask_func=attention_mask_func,
            scale=None,
            softmax_in_fp32=False,
            attn_mask_type=AttnMaskType.padding,
            scaled_masked_softmax_fusion=False,
        )
        .cuda()
        .half()
    )

    torch_softmax_output = torch_softmax(
        attention_scores,
        (mask != 0),
    )

    test_result = (fused_softmax_output - torch_softmax_output).abs()

    while test_result.dim() != 1:
        test_result = test_result.mean(dim=-1)

    diff = test_result.mean(dim=-1)

    if diff <= 1e-3:
        print(
            f"\n[Success] test_fused_softmax"
            f"\n > mean_difference={diff}"
            f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}"
            f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
        )
    else:
        print(
            f"\n[Fail] test_fused_softmax"
            f"\n > mean_difference={diff}, "
            f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, "
            f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
        )


def test_fused_upper_triangle_mask_softmax():
    gpt = GPT2Model.from_pretrained("gpt2").cuda().half()
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    test_text = (
        "Hello. How are you? I am fine thank you and you? yes Good. "
        "hi hi hi hi hi hi hi"  # 24
    )

    tokens = tokenizer(
        [test_text] * 4,
        return_tensors="pt",
    )

    attention_mask = tokens["attention_mask"].cuda()
    attention_mask = attention_mask.view(attention_mask.size(0), -1)
    attention_mask = attention_mask[:, None, None, :]
    attention_mask = (1.0 - attention_mask) * -10000.0
    attention_mask = attention_mask.repeat(1, 1, attention_mask.size()[-1], 1)
    attn = gpt.h[0]

    hidden_states = gpt.wte(tokens["input_ids"].cuda())
    q, k, v = attn.attn.c_attn(hidden_states).split(768, dim=-1)
    q = attn.attn._split_heads(q, attn.attn.num_heads, attn.attn.head_dim)
    k = attn.attn._split_heads(k, attn.attn.num_heads, attn.attn.head_dim)
    attn_weights = torch.matmul(q, k.transpose(-1, -2))

    sq, sk = q.size(-2), k.size(-2)
    causal_mask = attn.attn.bias[:, :, sk - sq : sk, :sk].bool()
    total_mask = ~(causal_mask & (attention_mask == 0))
    """
    tensor([[[[False,  True,  True,  ...,  True,  True,  True],
              [False, False,  True,  ...,  True,  True,  True],
              [False, False, False,  ...,  True,  True,  True],
              ...,
              [False, False, False,  ..., False,  True,  True],
              [False, False, False,  ..., False, False,  True],
              [False, False, False,  ..., False, False, False]]]
    """

    fused_softmax = (
        FusedScaleMaskSoftmax(
            input_in_fp16=True,
            input_in_bf16=False,
            mask_func=attention_mask_func,
            scale=None,
            softmax_in_fp32=False,
            attn_mask_type=AttnMaskType.causal,
            scaled_masked_softmax_fusion=True,
        )
        .cuda()
        .half()
    )

    fused_softmax_output = fused_softmax(
        attn_weights,
        total_mask,
    )

    torch_softmax = (
        FusedScaleMaskSoftmax(
            input_in_fp16=True,
            input_in_bf16=False,
            mask_func=attention_mask_func,
            scale=None,
            softmax_in_fp32=False,
            attn_mask_type=AttnMaskType.causal,
            scaled_masked_softmax_fusion=False,
        )
        .cuda()
        .half()
    )

    torch_softmax_output = torch_softmax(
        attn_weights,
        total_mask,
    )

    test_result = (fused_softmax_output - torch_softmax_output).abs()

    while test_result.dim() != 1:
        test_result = test_result.mean(dim=-1)

    diff = test_result.mean(dim=-1)

    if diff <= 1e-3:
        print(
            f"\n[Success] test_fused_upper_triangle_mask_softmax"
            f"\n > mean_difference={diff}"
            f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}"
            f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
        )
    else:
        print(
            f"\n[Fail] test_fused_upper_triangle_mask_softmax"
            f"\n > mean_difference={diff}, "
            f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, "
            f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}"
        )


def test_layer_norm():
    bert = BertModel.from_pretrained("bert-base-cased").cuda().half()
    tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
    test_text = (
        "Hello. How are you? I am fine thank you and you? yes Good. "
        "hi hi hi hi hi hi hi hi hi hi hi hi hi"  # 32
    )

    tokens = tokenizer(
        [test_text] * 4,
        return_tensors="pt",
    )

    # [bsz, seq_len, d_model]
    embedding_output = (
        bert.embeddings(
            input_ids=tokens["input_ids"].cuda(),
            position_ids=None,
            token_type_ids=tokens["token_type_ids"].cuda(),
            inputs_embeds=None,
            past_key_values_length=0,
        )
        .cuda()
        .half()
    )

    fused_layernorm_layer = (
        MixedFusedLayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half()
    )

    torch_layernorm_layer = (
        LayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half()
    )

    fused_output = fused_layernorm_layer(embedding_output)
    torch_output = torch_layernorm_layer(embedding_output)
    test_result = (fused_output - torch_output).abs()

    while test_result.dim() != 1:
        test_result = test_result.mean(dim=-1)

    diff = test_result.mean(dim=-1)

    if diff <= 1e-3:
        print(
            f"\n[Success] test_layer_norm"
            f"\n > mean_difference={diff}"
            f"\n > fused_values={fused_output[-1][-1][:5].tolist()}"
            f"\n > torch_values={torch_output[-1][-1][:5].tolist()}"
        )
    else:
        print(
            f"\n[Fail] test_layer_norm"
            f"\n > mean_difference={diff}, "
            f"\n > fused_values={fused_output[-1][-1][:5].tolist()}, "
            f"\n > torch_values={torch_output[-1][-1][:5].tolist()}"
        )


def attention_mask_func(attention_scores, attention_mask):
    attention_scores.masked_fill_(attention_mask, -10000.0)
    return attention_scores


def forward_torch_softmax(input, mask, scale):
    input = input * scale
    mask_output = attention_mask_func(input, mask) if mask is not None else input
    probs = torch.nn.Softmax(dim=-1)(mask_output)
    return probs


def test_masked_softmax_forward():
    import scaled_masked_softmax_cuda

    batch = 2
    attn = 16
    scale_t = torch.tensor([1.0])
    for qlen in [128, 256, 1024, 2048, 4096]:
        for klen in [128, 256, 1024, 2048]:
            inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
            masks = torch.randint(0, 2, (batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
            softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
            softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
            error = (softmax_results_torch - softmax_results).abs().max()
            assert error < 1e-3

def test_masked_softmax_backward():
    import scaled_masked_softmax_cuda

    batch = 2
    attn = 16
    scale_t = torch.tensor([1.0])
    for qlen in [128, 256, 1024, 2048, 4096]:
        for klen in [128, 256, 1024, 2048]:
            inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
            backward = torch.rand_like(inputs, dtype=torch.float16, device='cuda:0')
            masks = torch.randint(0, 2, (batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
            softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
            back_grad = scaled_masked_softmax_cuda.backward(backward, softmax_results, scale_t[0].item())

            inputs.requires_grad = True
            softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
            softmax_results_torch.backward(backward)
            error = (back_grad - inputs.grad).abs().max()
            assert error < 1e-3


def test_allmasked_softmax_forward():
    import scaled_masked_softmax_cuda 

    batch = 2
    attn = 16
    scale_t = torch.tensor([1.0])
    for qlen in [128, 256, 1024, 2048, 4096]:
        for klen in [128, 256, 1024, 2048]:
            inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
            masks = torch.ones((batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
            softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
            softmax_results_torch = torch.zeros_like(inputs)
            error = (softmax_results_torch - softmax_results).abs().max()
            assert error == 0.0


def test_allmasked_softmax_backward():
    import scaled_masked_softmax_cuda
    
    batch = 2
    attn = 16
    scale_t = torch.tensor([1.0])
    for qlen in [128, 256, 1024, 2048, 4096]:
        for klen in [128, 256, 1024, 2048]:
            inputs = torch.normal(0, 2, (batch, attn, qlen, klen), dtype=torch.float16, device='cuda:0')
            backward = torch.rand_like(inputs, dtype=torch.float16, device='cuda:0')
            masks = torch.ones((batch, 1, qlen, klen), dtype=torch.bool, device='cuda:0')
            softmax_results = scaled_masked_softmax_cuda.forward(inputs, masks, scale_t[0].item())
            back_grad = scaled_masked_softmax_cuda.backward(backward, softmax_results, scale_t[0].item())
            inputs.requires_grad = True
            softmax_results_torch = forward_torch_softmax(inputs, masks, scale_t[0].item())
            softmax_results_torch.backward(backward)
            error = (back_grad - inputs.grad).abs().max()
            assert error < 1e-3


if __name__ == "__main__":
    try:
        from transformers import BertTokenizer, GPT2Tokenizer
        from transformers.models.bert.modeling_bert import BertModel
        from transformers.models.gpt2.modeling_gpt2 import GPT2Model
        import transformers

        transformers.logging.set_verbosity(
            transformers.logging.FATAL,
        )

    except:
        print("\n[Fail] Please install `transformers` package to test fused kernels\n")
        exit(-1)

    load()
    test_masked_softmax_forward()
    test_masked_softmax_backward()
    test_allmasked_softmax_forward()
    test_allmasked_softmax_backward()
    test_load_fused_kernels()
    test_fused_softmax()
    test_fused_upper_triangle_mask_softmax()
    test_layer_norm()