File size: 4,481 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.


import torch


# A dictionary of all the memory buffers allocated.
_MEM_BUFFS = dict()


def allocate_mem_buff(name, numel, dtype, track_usage):
    """Allocate a memory buffer."""
    assert name not in _MEM_BUFFS, \
        'memory buffer {} already allocated.'.format(name)
    _MEM_BUFFS[name] = MemoryBuffer(name, numel, dtype, track_usage)
    return _MEM_BUFFS[name]


def get_mem_buff(name):
    """Get the memory buffer."""
    return _MEM_BUFFS[name]


class MemoryBuffer:
    """Contiguous memory buffer.
    Allocate a contiguous memory of type `dtype` and size `numel`. It is
    used to reduce memory fragmentation.

    Usage: After the allocation, the `_start` index is set tot the first
           index of the memory. A memory chunk starting from `_start` index
           can be `allocated` for an input tensor, with the elements of the
           tensor being coppied. The buffer can be reused by resetting the
           `_start` index.

    """
    def __init__(self, name, numel, dtype, track_usage):
        if torch.distributed.get_rank() == 0:
            element_size = torch.tensor([], dtype=dtype).element_size()
            print('> building the {} memory buffer with {} num elements '
                  'and {} dtype ({:.1f} MB)...'.format(
                      name, numel, dtype, numel*element_size/1024/1024),
                  flush=True)
        self.name = name
        self.numel = numel
        self.dtype = dtype
        self.data = torch.empty(self.numel,
                                dtype=self.dtype,
                                device=torch.cuda.current_device(),
                                requires_grad=False)

        # Index tracking the start of the free memory.
        self._start = 0

        # Values used for tracking usage.
        self.track_usage = track_usage
        if self.track_usage:
            self.in_use_value = 0.0
            self.total_value = 0.0


    def reset(self):
        """Reset the buffer start index to the beginning of the buffer."""
        self._start = 0


    def is_in_use(self):
        """Whether the current buffer hold on to any memory."""
        return self._start > 0


    def numel_in_use(self):
        """Return number of elements in use."""
        return self._start


    def add(self, tensor):
        """Allocate a chunk of memory from the buffer to tensor and copy
        the values."""
        assert tensor.dtype == self.dtype, \
            'Input tensor type {} different from buffer type {}'.format(
                tensor.dtype, self.dtype)
        # Number of elements of the input tensor.
        tensor_numel = torch.numel(tensor)
        new_start = self._start + tensor_numel
        assert new_start <= self.numel, \
            'Not enough memory left in the buffer ({} > {})'.format(
                tensor_numel, self.numel - self._start)
        # New tensor is a view into the memory.
        new_tensor = self.data[self._start:new_start]
        self._start = new_start
        new_tensor = new_tensor.view(tensor.shape)
        new_tensor.copy_(tensor)
        # Return a pointer to the new tensor.
        return new_tensor


    def get_data(self):
        """Return the data currently in use."""
        if self.track_usage:
            self.in_use_value += float(self._start)
            self.total_value += float(self.numel)
        return self.data[:self._start]


    def print_average_usage(self):
        """Print memory usage average over time. We would like this value
        to be as high as possible."""
        assert self.track_usage, 'You need to enable track usage.'
        if torch.distributed.get_rank() == 0:
            print(' > usage of {} memory buffer: {:.2f} %'.format(
                self.name, self.in_use_value * 100.0 / self.total_value),
                  flush=True)



class RingMemBuffer:
    """A ring of memory buffers."""

    def __init__(self, name, num_buffers, numel, dtype, track_usage):
        self.num_buffers = num_buffers
        self.buffers = [
            allocate_mem_buff(name+' {}'.format(i), numel, dtype, track_usage)
            for i in range(num_buffers)]
        self._index = -1


    def get_next_buffer(self):
        self._index += 1
        self._index = self._index % self.num_buffers
        buff = self.buffers[self._index]
        assert not buff.is_in_use(), 'buffer is already in use.'
        return buff