File size: 6,329 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron number of micro-batches calculators."""

from abc import ABC
from abc import abstractmethod


def build_num_microbatches_calculator(args):

    # Constant num micro-batches.
    if args.rampup_batch_size is None:
        num_microbatches_calculator = ConstantNumMicroBatches(
            args.global_batch_size, args.micro_batch_size,
            args.data_parallel_size)
        if args.rank == 0:
            print('setting number of micro-batches to constant {}'.format(
                num_microbatches_calculator.get()), flush=True)

    else:
        assert len(args.rampup_batch_size) == 3, 'expected the following ' \
            'format: --rampup_batch_size <start batch size> ' \
            '<batch size incerement> <ramp-up samples>'
        start_batch_size = int(args.rampup_batch_size[0])
        batch_size_increment = int(args.rampup_batch_size[1])
        ramup_samples = int(args.rampup_batch_size[2])
        if args.rank == 0:
            print('will use batch size rampup starting from global batch '
                  'size {} to global batch size {} with batch size increments '
                  '{} over {} samples.'.format(start_batch_size,
                                               args.global_batch_size,
                                               batch_size_increment,
                                               ramup_samples), flush=True)
        num_microbatches_calculator = RampupBatchsizeNumMicroBatches(
            start_batch_size, batch_size_increment, ramup_samples,
            args.global_batch_size, args.micro_batch_size,
            args.data_parallel_size)

    return num_microbatches_calculator


class NumMicroBatchesCalculator(ABC):

    def __init__(self):
        self.num_micro_batches = None
        self.current_global_batch_size = None

    def get(self):
        return self.num_micro_batches

    def get_current_global_batch_size(self):
        return self.current_global_batch_size

    @abstractmethod
    def update(self, consumed_samples, consistency_check):
        pass


class ConstantNumMicroBatches(NumMicroBatchesCalculator):

    def __init__(self, global_batch_size, micro_batch_size, data_parallel_size):
        micro_batch_times_data_parallel = micro_batch_size * \
                                          data_parallel_size
        assert global_batch_size % micro_batch_times_data_parallel == 0, \
            'global batch size ({}) is not divisible by micro batch size ({})' \
            ' times data parallel size ({})'.format(global_batch_size,
                                                    micro_batch_size,
                                                    data_parallel_size)
        self.num_micro_batches = global_batch_size // \
                                 micro_batch_times_data_parallel
        assert self.num_micro_batches >= 1
        self.current_global_batch_size = global_batch_size

    def update(self, consumed_samples, consistency_check):
        pass


class RampupBatchsizeNumMicroBatches(NumMicroBatchesCalculator):

    def __init__(self, start_batch_size, batch_size_increment, ramup_samples,
                 global_batch_size, micro_batch_size, data_parallel_size):
        """Batch size ramp up.
        Over 
          steps = (global_batch_size - start_batch_size) / batch_size_increment
        increment batch size from start-batch-size to global_batch_size using
          rampup-samples / steps
        samples.
        Arguments:
            start_batch_size: global batch size to start with
            batch_size_increment: global batch size increments
            ramup_samples: number of samples to use ramp up global
               batch size from `start_batch_size` to `global_batch_size`
            global_batch_size: global batch size post rampup
            micro_batch_size: micro batch size
            data_parallel_size: data parallel size.
        """

        self.micro_batch_size = micro_batch_size
        self.data_parallel_size = data_parallel_size
        self.micro_batch_times_data_parallel_size = self.micro_batch_size * \
                                                    self.data_parallel_size
        assert self.micro_batch_times_data_parallel_size > 0
        
        assert start_batch_size > 0
        self.start_batch_size = start_batch_size

        assert global_batch_size > 0
        self.global_batch_size = global_batch_size
        diff_batch_size = self.global_batch_size - self.start_batch_size
        assert diff_batch_size >= 0
        assert batch_size_increment > 0
        self.batch_size_increment = batch_size_increment
        assert diff_batch_size % batch_size_increment == 0, 'expected ' \
            'global batch size interval ({}) to be divisible by global batch ' \
            'size increment ({})'.format(diff_batch_size, batch_size_increment)

        num_increments = diff_batch_size // self.batch_size_increment
        self.ramup_samples = ramup_samples
        assert self.ramup_samples >= 0
        self.rampup_samples_per_increment = self.ramup_samples / num_increments

        # Initialize number of microbatches.
        self.update(0, False)


    def update(self, consumed_samples, consistency_check):

        if consumed_samples > self.ramup_samples:
            self.current_global_batch_size = self.global_batch_size
        else:
            steps = int(consumed_samples / self.rampup_samples_per_increment)
            self.current_global_batch_size = self.start_batch_size + \
                steps * self.batch_size_increment
            assert self.current_global_batch_size <= self.global_batch_size

        if consistency_check:
            assert self.current_global_batch_size % \
                self.micro_batch_times_data_parallel_size == 0, 'current global ' \
                'batch size ({}) is not divisible by micro_batch_size ({}) times' \
                'data parallel size ({})'.format(self.current_global_batch_size,
                                                 self.micro_batch_size,
                                                 self.data_parallel_size)
        self.num_micro_batches = self.current_global_batch_size // \
                                 self.micro_batch_times_data_parallel_size