File size: 5,613 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""This code is copied fron NVIDIA apex:
      https://github.com/NVIDIA/apex
   with some changes. """

import importlib
import numbers

import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn import init
from megatron.core.utils import make_viewless_tensor

try:
    from apex.contrib.layer_norm.layer_norm import FastLayerNormFN

    HAVE_PERSIST_LAYER_NORM = True
except:
    HAVE_PERSIST_LAYER_NORM = False

global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = None


class FusedLayerNormAffineFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input, weight, bias, normalized_shape, eps):

        ctx.normalized_shape = normalized_shape
        ctx.eps = eps
        input_ = input.contiguous()
        weight_ = weight.contiguous()
        bias_ = bias.contiguous()
        output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(
            input_, ctx.normalized_shape, weight_, bias_, ctx.eps
        )
        if False:
            print(input_.shape)
            print(ctx.normalized_shape)
            print(weight_.shape)
            print(bias_.shape)
            print(ctx.eps)

        ctx.save_for_backward(input_, weight_, bias_, mean, invvar)

        return output

    @staticmethod
    def backward(ctx, grad_output):

        input_, weight_, bias_, mean, invvar = ctx.saved_tensors
        grad_input = grad_weight = grad_bias = None
        grad_input, grad_weight, grad_bias = (
            fused_mix_prec_layer_norm_cuda.backward_affine(
                grad_output.contiguous(),
                mean,
                invvar,
                input_,
                ctx.normalized_shape,
                weight_,
                bias_,
                ctx.eps,
            )
        )

        return grad_input, grad_weight, grad_bias, None, None


class MixedFusedLayerNorm(torch.nn.Module):

    def __init__(
        self,
        normalized_shape,
        eps=1e-5,
        no_persist_layer_norm=True,
        sequence_parallel=False,
    ):
        super(MixedFusedLayerNorm, self).__init__()

        global fused_mix_prec_layer_norm_cuda
        # fused_mix_prec_layer_norm_cuda = importlib.import_module(
        #   "fused_mix_prec_layer_norm_cuda")
        fused_mix_prec_layer_norm_cuda = importlib.import_module(
            "fused_layer_norm_cuda"
        )

        # List of hiddens sizes supported in the persistent layer norm kernel
        # If the hidden size is not supported, fall back to the non-persistent
        # kernel.
        persist_ln_hidden_sizes = [
            1024,
            1536,
            2048,
            2304,
            3072,
            3840,
            4096,
            5120,
            6144,
            8192,
            10240,
            12288,
            12800,
            15360,
            16384,
            18432,
            20480,
            24576,
            25600,
            30720,
            32768,
            40960,
            49152,
            65536,
        ]
        if (
            normalized_shape not in persist_ln_hidden_sizes
            or not HAVE_PERSIST_LAYER_NORM
        ):
            no_persist_layer_norm = True

        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        self.normalized_shape = torch.Size(normalized_shape)
        self.eps = eps
        self.weight = Parameter(torch.Tensor(*normalized_shape))
        self.bias = Parameter(torch.Tensor(*normalized_shape))
        self.reset_parameters()
        self.no_persist_layer_norm = no_persist_layer_norm
        self.sequence_parallel = sequence_parallel

        # set sequence parallelism flag on weight and bias parameters
        setattr(self.weight, "sequence_parallel", self.sequence_parallel)
        setattr(self.bias, "sequence_parallel", self.sequence_parallel)

    def reset_parameters(self):

        init.ones_(self.weight)
        init.zeros_(self.bias)

    def forward(self, input):
        if self.no_persist_layer_norm:
            return FusedLayerNormAffineFunction.apply(
                input, self.weight, self.bias, self.normalized_shape, self.eps
            )
        else:
            output = FastLayerNormFN.apply(input, self.weight, self.bias, self.eps)

            # Apex's fast layer norm function outputs a 'view' tensor (i.e., has
            # a populated '_base' field). This will result in schedule.py's
            # deallocate_output_tensor() throwing an error, so a viewless tensor is
            # created to prevent this.
            output = make_viewless_tensor(
                inp=output, requires_grad=input.requires_grad, keep_graph=True
            )

            return output


class RMSNorm(torch.nn.Module):
    def __init__(
        self,
        dim: int,
        eps: float = 1e-6,
        sequence_parallel: bool = False,
        gemma: bool = False,
    ):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))
        self.gemma = gemma

        setattr(self.weight, "sequence_parallel", sequence_parallel)

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        if self.gemma:
            output = self._norm(x.float())
            output = output * (1.0 + self.weight.float())
            return output.type_as(x)
        else:
            output = self._norm(x.float()).type_as(x)
            return output * self.weight