File size: 8,264 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron Module"""

import torch
from torch.autograd import Variable
from torch.nn.parameter import Parameter

from megatron import get_args
from megatron.core import mpu, tensor_parallel


_FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor)
_HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor)
_BF16_TYPES = (torch.BFloat16Tensor, torch.cuda.BFloat16Tensor)



def param_is_not_shared(param):
    return not hasattr(param, 'shared') or not param.shared



class MegatronModule(torch.nn.Module):
    """Megatron specific extensions of torch Module with support
    for pipelining."""

    def __init__(self, share_word_embeddings=True):
        super(MegatronModule, self).__init__()
        self.share_word_embeddings = share_word_embeddings


    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        """Use this function to override the state dict for
        saving checkpoints."""
        return self.state_dict(prefix=prefix, keep_vars=keep_vars)


    def word_embeddings_weight(self):
        if self.pre_process:
            if self.language_model.tie_embed_logits:
                return self.language_model.embedding.word_embeddings.weight
            return self.language_model.lm_head
        else:
            if not self.language_model.tie_embed_logits:
                return self.language_model.lm_head
            if not self.share_word_embeddings:
                raise Exception('word_embeddings_weight() called for last '
                                'stage, but share_word_embeddings is false')
            return self.word_embeddings.weight

    def initialize_word_embeddings(self, init_method_normal, args):
        if not self.share_word_embeddings:
            raise Exception('initialize_word_embeddings() was called but '
                            'share_word_embeddings is false')

        # This function just initializes the word embeddings in the final stage
        # when we are using pipeline parallelism. Nothing to do if we aren't
        # using pipeline parallelism.
        if args.pipeline_model_parallel_size == 1:
            return

        # Parameters are shared between the word embeddings layers, and the
        # heads at the end of the model. In a pipelined setup with more than
        # one stage, the initial embedding layer and the head are on different
        # workers, so we do the following:
        # 1. Create a second copy of word_embeddings on the last stage, with
        #    initial parameters of 0.0.
        # 2. Do an all-reduce between the first and last stage to ensure that
        #    the two copies of word_embeddings start off with the same
        #    parameter values.
        # 3. In the training loop, before an all-reduce between the grads of
        #    the two word_embeddings layers to ensure that every applied weight
        #    update is the same on both stages.
        if mpu.is_pipeline_last_stage() and \
                not self.pre_process:
            assert not mpu.is_pipeline_first_stage()
            self._word_embeddings_for_head_key = 'word_embeddings_for_head'
            # set word_embeddings weights to 0 here, then copy first
            # stage's weights using all_reduce below.
            self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
                args.padded_vocab_size, args.hidden_size,
                init_method=init_method_normal(args.init_method_std),
                params_dtype=args.params_dtype,
                use_cpu_initialization=args.use_cpu_initialization,
                perform_initialization=args.perform_initialization)
            self.word_embeddings.weight.data.fill_(0)
            self.word_embeddings.weight.shared = True

        # Zero out initial weights for decoder embedding.
        # NOTE: We don't currently support T5 with the interleaved schedule.
        if not mpu.is_pipeline_first_stage(ignore_virtual=True) and \
                self.pre_process:
            self.language_model.embedding.zero_parameters()

        if not torch.distributed.is_initialized():
            if not getattr(MegatronModule, "embedding_warning_printed", False):
                print("WARNING! Distributed processes aren't initialized, so "
                      "word embeddings in the last layer are not initialized. "
                      "If you are just manipulating a model this is fine, but "
                      "this needs to be handled manually. If you are training "
                      "something is definitely wrong.")
                MegatronModule.embedding_warning_printed = True
            return

        # Ensure that first and last stages have the same initial parameter
        # values.
        if mpu.is_rank_in_embedding_group():
            torch.distributed.all_reduce(self.word_embeddings_weight().data,
                                         group=mpu.get_embedding_group())

        # Ensure that encoder(first stage) and decoder(split stage) position
        # embeddings have the same initial parameter values
        # NOTE: We don't currently support T5 with the interleaved schedule.
        if mpu.is_rank_in_position_embedding_group() and \
                args.pipeline_model_parallel_split_rank is not None:
            # TODO: Support tokentype embedding.
            self.language_model.embedding.cuda()
            position_embeddings = self.language_model.embedding.position_embeddings
            torch.distributed.all_reduce(position_embeddings.weight.data,
                                         group=mpu.get_position_embedding_group())


def conversion_helper(val, conversion):
    """Apply conversion to val. Recursively apply conversion if `val`
    #is a nested tuple/list structure."""
    if not isinstance(val, (tuple, list)):
        return conversion(val)
    rtn = [conversion_helper(v, conversion) for v in val]
    if isinstance(val, tuple):
        rtn = tuple(rtn)
    return rtn


def fp32_to_float16(val, float16_convertor):
    """Convert fp32 `val` to fp16/bf16"""
    def half_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, _FLOAT_TYPES):
            val = float16_convertor(val)
        return val
    return conversion_helper(val, half_conversion)


def float16_to_fp32(val):
    """Convert fp16/bf16 `val` to fp32"""
    def float_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)):
            val = val.float()
        return val
    return conversion_helper(val, float_conversion)



class Float16Module(MegatronModule):

    def __init__(self, module, args):
        super(Float16Module, self).__init__()

        if args.fp16:
            self.add_module('module', module.half())
            def float16_convertor(val):
                return val.half()
        elif args.bf16:
            self.add_module('module', module.bfloat16())
            def float16_convertor(val):
                return val.bfloat16()
        else:
            raise Exception('should not be here')

        self.float16_convertor = float16_convertor


    def set_input_tensor(self, input_tensor):
        return self.module.set_input_tensor(input_tensor)


    def forward(self, *inputs, **kwargs):
        if mpu.is_pipeline_first_stage():
            inputs = fp32_to_float16(inputs, self.float16_convertor)
        outputs = self.module(*inputs, **kwargs)
        if mpu.is_pipeline_last_stage():
            outputs = float16_to_fp32(outputs)
        return outputs


    def state_dict(self, prefix='', keep_vars=False):
        return self.module.state_dict(prefix=prefix, keep_vars=keep_vars)


    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        return self.module.state_dict_for_save_checkpoint(prefix=prefix,
                                                          keep_vars=keep_vars)


    def load_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)