File size: 8,018 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""T5 model."""

import torch

import megatron.model.language_model
from megatron import get_args
from megatron.core import tensor_parallel
from megatron.model.enums import AttnMaskType
from megatron.model.language_model import parallel_lm_logits

from megatron.model.utils import (
    init_method_normal,
    scaled_init_method_normal
)
from .module import MegatronModule


def t5_extended_attention_mask(attention_mask_list):

    def attn_mask_postprocess(attn_mask):
        # [b, 1, s, s]
        extended_attention_mask = attn_mask.unsqueeze(1)
        return extended_attention_mask

    return [attn_mask_postprocess(attn_mask) for attn_mask in attention_mask_list]


def t5_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


class T5LMHead(MegatronModule):
    """Masked LM head for T5

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
        parallel_output: wether output logits being distributed or not.
    """

    def __init__(self, mpu_vocab_size, parallel_output):
        super(T5LMHead, self).__init__()

        args = get_args()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
        self.bias.partition_dim = 0
        self.bias.stride = 1
        self.parallel_output = parallel_output

    def forward(self, hidden_states, word_embeddings_weight):
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


class T5Model(MegatronModule):
    """T5 Language model."""

    def __init__(self,
                 num_tokentypes=0,
                 parallel_output=True,
                 pre_process=True,
                 post_process=True,
                 add_encoder=True,
                 add_decoder=True,
                 model_type=None):
        super(T5Model, self).__init__()
        args = get_args()

        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
        self.parallel_output = parallel_output
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
        self.pre_process = pre_process
        self.post_process = post_process
        self.add_encoder = add_encoder
        self.add_decoder = add_decoder

        self.language_model, self._language_model_key = megatron.model.language_model.get_language_model(
            num_tokentypes=num_tokentypes,
            add_pooler=False,
            add_encoder=add_encoder,
            add_decoder=add_decoder,
            encoder_attn_mask_type=AttnMaskType.padding,
            init_method=init_method,
            scaled_init_method=scaled_init_method,
            pre_process=self.pre_process,
            post_process=self.post_process,
            args=args,
            model_type=model_type)

        self.initialize_word_embeddings(init_method_normal, args)

        if self.post_process and self.add_decoder:
            self.lm_head = T5LMHead(
                self.word_embeddings_weight().size(0),
                parallel_output)
            self._lm_head_key = 'lm_head'

    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
        self.language_model.set_input_tensor(input_tensor)

    def forward(self, encoder_input_ids, decoder_input_ids, encoder_attn_mask,
                decoder_attn_mask, encoder_decoder_attn_mask,
                tokentype_ids=None, lm_labels=None, enc_hidden_states=None):

        # Converting the attention masks to proper parameter settings
        encoder_attn_mask, decoder_attn_mask, encoder_decoder_attn_mask = t5_extended_attention_mask(
            [encoder_attn_mask, decoder_attn_mask, encoder_decoder_attn_mask])

        encoder_position_ids = t5_position_ids(encoder_input_ids)
        decoder_position_ids = t5_position_ids(decoder_input_ids)

        lm_output = self.language_model(encoder_input_ids,
                                        encoder_position_ids,
                                        encoder_attn_mask,
                                        decoder_input_ids,
                                        decoder_position_ids,
                                        decoder_attn_mask,
                                        encoder_decoder_attn_mask,
                                        tokentype_ids=tokentype_ids,
                                        enc_hidden_states=enc_hidden_states)

        if self.post_process and self.add_decoder:
            decoder_output, encoder_output = lm_output
            # Output. [s, b, h]
            lm_logits = self.lm_head(decoder_output,
                                     self.word_embeddings_weight())

            if lm_labels is None:
                # [s b h] => [b s h]
                return lm_logits.transpose(0,1).contiguous()
            else:
                # [b s] => [s b]
                lm_labels = lm_labels.transpose(0, 1).contiguous()
                if self.fp16_lm_cross_entropy:
                    assert lm_logits.dtype == torch.half
                    lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels)
                else:
                    lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(),
                                                                                lm_labels)
                # [s b] => [b s]
                lm_loss = lm_loss.transpose(0,1).contiguous()
            return lm_loss
        elif self.add_decoder and not self.add_encoder:
            decoder_output, encoder_output = lm_output
            return decoder_output
        else:
            encoder_output = lm_output
            return encoder_output

    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(prefix=prefix,
                                                                 keep_vars=keep_vars)
        if self.post_process and self.add_decoder:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(prefix=prefix,
                                                              keep_vars=keep_vars)
         # Save word_embeddings.
        if self.post_process and not self.pre_process and self.add_decoder:
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(prefix=prefix,
                                                  keep_vars=keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
        if self.post_process and self.add_decoder:
            self.lm_head.load_state_dict(state_dict[self._lm_head_key],
                                         strict=strict)
        # Load word embeddings.
        if self.post_process and not self.pre_process and self.add_decoder:
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)