File size: 29,961 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron distributed optimizer."""
import math
import torch
from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel
from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
class Range:
"""
A range represents a start and end points for indexing a shard
from a full tensor.
"""
def __init__(self, start, end):
self.start = start
self.end = end
self.size = end - start
def normalize(self, start = 0):
return Range(start, start + self.size)
def __str__(self):
return "%d,%d [%d]" % (self.start, self.end, self.size)
class DistributedOptimizer(MixedPrecisionOptimizer):
"""Distributed optimizer, for all data types (fp16, bf16, and fp32).
Arguments:
optimizer: base optimizer such as Adam or SGD
clip_grad: clip gradeints with this global L2 norm. Note
that clipping is ignored if clip_grad == 0
log_num_zeros_in_grad: return number of zeros in the gradients.
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
"""
@classmethod
def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
"""
Build mapping from param reference to grad buffer shard ranges.
This method builds a mapping from parameter references to grad
buffer shard ranges, specific to each data-parallel (DP) rank's
set of 'owned' parameters. Each grad buffer (padded to be an even
multiple of DP-world-size) is conceptually divided into DP-world-size
contiguous regions, where each DP rank 'owns' a contiguous regions.
Ownership in this sense means DP rank is responsible for reducing
the relevant subset of grads, and updating the relevant subset of
params.
This conceptual partitioning of the grad buffer does NOT respect
parameter boundaries, and as such it is assumed that each created
range references a shard (or subset) of the full parameter. It is
easiest to think of each DP rank as operating (i.e., reducing,
gathering) purely on views into the grad buffer, for all model-to-
main & main-to-model operations.
This method creates three ranges:
- The param's range within the entire grad buffer (i.e., world index).
- The param's range within the DP rank's local view of the grad buffer.
- The param's range within itself (i.e., its shard).
"""
# Param range map.
param_world_index_map = model._grad_buffer_param_index_map[dtype]
param_range_map = {}
for param, param_world_indexes in param_world_index_map.items():
# Param range.
param_world_start, param_world_end = param_world_indexes
param_local_start = max(
0,
param_world_start - gbuf_world_range.start)
param_local_end = min(
gbuf_world_range.size,
param_world_end - gbuf_world_range.start)
# Add param, if within local gbuf range.
if param_local_end > param_local_start:
param_local_range = Range(param_local_start, param_local_end)
param_world_range = param_local_range.normalize(
param_local_start + gbuf_world_range.start)
sub_param_start = max(0, gbuf_world_range.start-param_world_start)
sub_param_range = param_local_range.normalize(sub_param_start)
param_range_map[param] = {
"gbuf_world": param_world_range,
"gbuf_local": param_local_range,
"param" : sub_param_range,
}
return param_range_map
@classmethod
def build_model_gbuf_range(cls, model, dtype):
"""
Build mapping between params and their grad buffers.
This method does the initial setup for the method above. This setup
includes determining the shard ranges into the DDP's grad buffer for
each data-parallel (DP) rank. Each DP rank keeps range info for
all other DP ranks, for the purpose of creating args for
reduce-scatter and all-gather.
"""
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_world_size = mpu.get_data_parallel_world_size()
# Grad buffer range.
grad_buffer = model._grad_buffers[dtype]
gbuf_size = grad_buffer.numel
max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
# All world ranges. (i.e., across all data parallel ranks)
gbuf_world_all_ranges = []
for r in range(data_parallel_world_size):
gbuf_world_start = r * max_gbuf_range_size
gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
gbuf_world_all_ranges.append(gbuf_world_range)
# Local DP's ranges.
gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
gbuf_local_range = gbuf_world_range.normalize()
# Get each param's ranges.
param_range_map = cls.build_model_gbuf_param_range_map(model,
dtype,
gbuf_world_range)
# Group into dict.
data = {
"local" : gbuf_local_range,
"world" : gbuf_world_range,
"world_all" : gbuf_world_all_ranges,
"param_map" : param_range_map,
"max_range_size" : max_gbuf_range_size,
}
return data
@classmethod
def build_model_gbuf_range_map(cls, model):
"""
Create param-to-grad-buffer mappings, for grad buffer data types
within a specific virtual model.
"""
return {
dtype : cls.build_model_gbuf_range(model, dtype)
for dtype in model._grad_buffers
}
@classmethod
def build_model_param_gbuf_map(cls, model_gbuf_ranges):
"""
Create a reverse of the model_gbuf_ranges, for referencing in
opposite direction.
"""
param_gbuf_map = {}
for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
for dtype, gbuf_range_map in model_gbuf_range_map.items():
for param, param_range_map in gbuf_range_map["param_map"].items():
param_gbuf_map[param] = (model_index, dtype)
return param_gbuf_map
@classmethod
def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
"""
Create optimizer groups.
Given the set of parameter shard ranges that are owned by the current
data-parallel (DP) rank, gather the set of parameters that will be
used (in the method below) to create the current DP's optimizer
groups.
"""
num_groups = len(param_groups)
# Param group map.
param_group_map = {}
for group_index, group in enumerate(param_groups):
for param in group["params"]:
assert param.requires_grad
param_group_map[param] = group_index
# Optimizer group ranges.
group_ranges = [ {"params": []} for _ in param_groups ]
for model_gbuf_range_map in model_gbuf_ranges:
for dtype, gbuf_range_map in model_gbuf_range_map.items():
for param in gbuf_range_map["param_map"]:
group_index = param_group_map[param]
group_range = group_ranges[group_index]
group_range["params"].append(param)
# Squeeze zero-size group ranges.
for group_index, group_range in enumerate(group_ranges):
group_range["orig_group"] = param_groups[group_index]
group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
return group_ranges
@classmethod
def build_model_and_main_param_groups(cls,
model_gbuf_ranges,
param_gbuf_map,
opt_group_ranges):
"""
Create main parameter groups needed for the optimizer step.
These groups encompass both: 1) groups used by this class, for
reducing/gather, and 2) groups used by the inner optimizer for the
parameter update. Given that the conceptual grad buffer partitioning
(created in earlier method) doesn't respect parameter boundaries,
the optimizer operates on shards of the model parameters, rather than
the full parameters.
"""
# Parameter groups:
# model_float16_groups: original float16 parameters
# model_fp32_groups: original fp32 parameters
# shard_float16_groups: shards of original float16 parameters
# shard_fp32_groups: shards of original fp32 parameters
# shard_fp32_from_float16_groups: fp32 copy of float16 parameters
model_float16_groups = []
model_fp32_groups = []
shard_float16_groups = []
shard_fp32_groups = []
shard_fp32_from_float16_groups = []
# Allocate (or slice) each group's param shard.
for group_index, group_range in enumerate(opt_group_ranges):
# Params of this group.
model_float16_params_this_group = []
model_fp32_params_this_group = []
shard_float16_params_this_group = []
shard_fp32_params_this_group = []
shard_fp32_from_float16_params_this_group = []
model_float16_groups.append(model_float16_params_this_group)
model_fp32_groups.append(model_fp32_params_this_group)
shard_float16_groups.append(shard_float16_params_this_group)
shard_fp32_groups.append(shard_fp32_params_this_group)
shard_fp32_from_float16_groups.append(
shard_fp32_from_float16_params_this_group)
for model_param in group_range["params"]:
assert model_param.requires_grad
model_index, dtype = param_gbuf_map[model_param]
gbuf_range = model_gbuf_ranges[model_index][dtype]
param_range = gbuf_range["param_map"][model_param]["param"]
# fp16, bf16 params.
if model_param.type() in ['torch.cuda.HalfTensor',
'torch.cuda.BFloat16Tensor']:
# Clone model -> main.
shard_model_param = model_param.detach().view(-1) \
[param_range.start:param_range.end]
shard_main_param = shard_model_param.clone().float()
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_model_param, model_param)
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_main_param, model_param)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
shard_main_param.shared = model_param.shared
# Add to group.
model_float16_params_this_group.append(model_param)
shard_float16_params_this_group.append(shard_model_param)
shard_fp32_from_float16_params_this_group.append(shard_main_param)
# fp32 params.
elif model_param.type() == 'torch.cuda.FloatTensor':
shard_model_param = model_param.view(-1) \
[param_range.start:param_range.end]
model_fp32_params_this_group.append(model_param)
shard_fp32_params_this_group.append(shard_model_param)
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_model_param, model_param)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
else:
raise TypeError('Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type()))
# Update optimizer's params.
group_range["orig_group"]["params"] = [
*shard_fp32_params_this_group,
*shard_fp32_from_float16_params_this_group,
]
return (
model_float16_groups,
model_fp32_groups,
shard_float16_groups,
shard_fp32_groups,
shard_fp32_from_float16_groups,
)
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, params_dtype, grad_scaler, models):
"""
See top of class definition for argument descriptions.
The steps in this method create the core mapping between DDP grad
buffers, parameters, and parameter shard ranges, that is needed for
converting between model param indexes and main parameter shard
indexes. This method also updates the optimizer parameter groups
with the newly created shards.
"""
super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, params_dtype, grad_scaler, models)
# Verify that contiguous buffers are being used.
# - Note: this should already be checked in arguments.py.
assert use_contiguous_buffers_in_local_ddp
# Model grad buffer ranges.
self.model_gbuf_ranges = []
for model_index, model in enumerate(self.models):
self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
self.model_param_gbuf_map = \
self.build_model_param_gbuf_map(self.model_gbuf_ranges)
# Optimizer ranges.
self.opt_group_ranges = self.build_optimizer_group_ranges(
self.optimizer.param_groups,
self.model_gbuf_ranges)
# Allocate main param shards.
(
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups,
self.shard_fp32_groups,
self.shard_fp32_from_float16_groups,
) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
self.model_param_gbuf_map,
self.opt_group_ranges)
# Initialize param buffers.
# - These are views on the DDP model's grad buffers, that share
# storage & have their own dtype. This is safe because the param
# dtype size is always <= grad dtype size.
self.param_buffers = []
for model_index, model in enumerate(self.models):
current_param_buffers = {}
for dtype, grad_buffer in model._grad_buffers.items():
param_buffer = torch.tensor(grad_buffer.data.storage()._untyped(),
dtype = params_dtype,
device = grad_buffer.data.device)
param_buffer = param_buffer[:grad_buffer.numel_padded]
current_param_buffers[dtype] = param_buffer
self.param_buffers.append(current_param_buffers)
# Update optimizer groups.
# - Also, leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors.
self.optimizer.param_groups = \
[ g["orig_group"] for g in self.opt_group_ranges ]
self.optimizer.load_state_dict(self.optimizer.state_dict())
def get_model_param_range_map(self, param):
"""
Given a model param, get the index sub-range of the param that this
data-parallel rank owns.
"""
model_index, dtype = self.model_param_gbuf_map[param]
gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
param_range_map = gbuf_range_map["param_map"][param]
return param_range_map
def get_model_parallel_group(self):
"""
With the distributed optimizer, the model parallel group is the
entire world.
"""
return None
def state_dict(self):
"""
The state dict must contain the fp32-from-float16 shards.
"""
state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict()
if self.grad_scaler:
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
state_dict['shard_fp32_from_float16_groups'] = \
self.shard_fp32_from_float16_groups
return state_dict
def load_state_dict(self, state_dict):
"""
Load the state dict.
"""
# Optimizer.
optimizer_key = 'optimizer'
if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict'
print_rank_0('***WARNING*** loading optimizer from '
'an old checkpoint ...')
self.optimizer.load_state_dict(state_dict[optimizer_key])
# Grad scaler.
if 'grad_scaler' not in state_dict:
if self.fp16:
print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else:
if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else:
print_rank_0('***WARNING*** fould the grad scaler in the '
'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...')
# Copy data for the main params.
for current_group, saved_group in zip(
self.shard_fp32_from_float16_groups,
state_dict["shard_fp32_from_float16_groups"]):
for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data)
def zero_grad(self, set_to_none=True):
"""
Zero grads.
We only need to zero the model related parameters, i.e.,
model_float16_groups & model_fp32_groups. We additionally zero
the remaining groups as a memory optimization to reduce
fragmentation; in the case of set_to_none==True, the space
used by this field can be safely deallocated at this point.
"""
for groups in (
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups, # grad empty/unused here?
self.shard_fp32_groups, # throws grad-access warning
self.shard_fp32_from_float16_groups):
for group in groups:
_zero_grad_group_helper(group, set_to_none)
@staticmethod
def get_model_buffer_dp_views(model_buffers):
"""
Get shard views of each of the DDP's param/grad buffers.
In this nested list, the top level is grouped by the virtual model
index and the buffer's data type. The sub-level is a list of
shards of that buffer, where each shard in the list represents
a contiguous view of the buffer, that is owned by a data-parallel
rank. The shard boundary does not respect parameter boundaries, and
so the elements of some parameters are split across data parallel
ranks.
Additionally, return references to the entire buffers, for use
in reduce_scatter_tensor and _all_gather_base.
"""
data_parallel_world_size = mpu.get_data_parallel_world_size()
# Buffer views.
view_items = []
for model_index, buffers in enumerate(model_buffers):
for dtype, buf in buffers.items():
assert buf.numel() % data_parallel_world_size == 0
shard_size = int(buf.numel() / data_parallel_world_size)
buf_views = [buf[(r*shard_size):((r+1)*shard_size)]
for r in range(data_parallel_world_size)]
view_items.append((model_index, dtype, buf, buf_views))
return view_items
def get_model_grad_buffer_dp_views(self):
return self.get_model_buffer_dp_views([
{dtype : mem_buffer.data}
for model in self.models
for dtype, mem_buffer in model._grad_buffers.items()])
def get_model_param_buffer_dp_views(self):
return self.get_model_buffer_dp_views(self.param_buffers)
def reduce_model_grads(self, args, timers):
"""
Reduce-scatter model grads.
The DDP's grad buffer is used for the reduce-scatter, and thus no
tensors are dynamically allocated.
Note: this is a different order of reduction, versus the non-
distributed optimizer, which reduces: 1) layernorm grads, 2) all
grads, 3) embedding grads.
"""
# All-reduce layer-norm grads (for sequence parallelism).
timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_layernorm_grads(args)
timers('layernorm-grads-all-reduce').stop()
# All-reduce embedding grads.
timers('embedding-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_embedding_grads(args)
timers('embedding-grads-all-reduce').stop()
# Reduce-scatter setup.
timers('grads-reduce-scatter', log_level=1).start(
barrier=args.barrier_with_L1_time)
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_world_size = mpu.get_data_parallel_world_size()
data_parallel_group = mpu.get_data_parallel_group()
# Scale grad buffers by '1 / data_parallel_world_size'.
for model in self.models:
for dtype, gbuf in model._grad_buffers.items():
gbuf.data /= data_parallel_world_size
# Reduce-scatter all grads.
gbuf_view_items = self.get_model_grad_buffer_dp_views()
for index, (model_index, dtype, gbuf, gbuf_views) \
in enumerate(gbuf_view_items):
torch.distributed.reduce_scatter_tensor(
gbuf_views[data_parallel_rank],
gbuf,
group = data_parallel_group,
)
timers('grads-reduce-scatter').stop()
def gather_model_params(self, args, timers):
"""
All-gather updated model params.
The DDP's param buffer is used for the all-gather, and thus no
tensors are dynamically allocated. After the all-gather, the params
can be copied from the param buffer to the param.
"""
timers('params-all-gather', log_level=1).start(
barrier=args.barrier_with_L1_time)
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_group = mpu.get_data_parallel_group()
# All-gather updated main params.
# - All param buffer views are guaranteed to have the same num elements
# across all data parallel ranks, due to grad buffer padding that is
# done in distributed.py, and extended to the param buffers. Thus,
# all sub-views will have consistent start/end indexes across data
# parallel ranks.
pbuf_view_items = self.get_model_param_buffer_dp_views()
for index, (model_index, dtype, pbuf, pbuf_views) \
in enumerate(pbuf_view_items):
torch.distributed._all_gather_base(
pbuf,
pbuf_views[data_parallel_rank],
group = data_parallel_group,
)
# Copy from param buffer to each param.
for model_id, model in enumerate(self.models):
for dtype, param_map in model._grad_buffer_param_index_map.items():
for param, buf_range in param_map.items():
param_buf = self.param_buffers[model_id][dtype]
param_buf_shard = param_buf[buf_range[0]:buf_range[1]]
param.view(-1).detach().copy_(param_buf_shard)
timers('params-all-gather').stop()
def _collect_main_grad_data_for_unscaling(self):
"""
Note: this should be equivalent to the float-16 optimizer's method,
but writtent differently, so the two should be combined.
"""
return [
param.grad.data
for group in self.optimizer.param_groups
for param in group["params"]
]
def _get_model_and_main_params_data_float16(self):
"""
Get aligned list of model and main params.
"""
model_data = []
main_data = []
for model_group, main_group in zip(self.shard_float16_groups,
self.shard_fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_model_grads_to_main_grads(self):
"""
Copy model grads to main grads.
Since this step follows a reduce-scatter through the DDP's grad
buffer, this method is responsible for copying the updated grads
from the grad buffer to the main shard's grad field.
"""
# Utility method for copying group grads.
def copy_group_grads(model_groups, shard_main_groups):
for model_group, shard_main_group in zip(model_groups,
shard_main_groups):
for model_param, shard_main_param in zip(model_group,
shard_main_group):
param_range_map = self.get_model_param_range_map(model_param)
param_range = param_range_map["param"]
assert param_range.size == shard_main_param.nelement()
model_grad = model_param.main_grad
shard_model_grad = model_grad.view(-1) \
[param_range.start:param_range.end]
shard_main_param.grad = shard_model_grad.float()
# Copy model groups to shard groups.
copy_group_grads(self.model_float16_groups,
self.shard_fp32_from_float16_groups)
copy_group_grads(self.model_fp32_groups,
self.shard_fp32_groups)
def _copy_main_params_to_model_params(self):
"""
Copy main params to model params.
Since this step is followed by an all-gather through the DDP's grad
buffer, this method is responsible for copying the updated params
from the main shards into the correct position in the grad buffer.
"""
# Utility method for copying group params.
def copy_group_params(shard_main_groups, model_groups):
for shard_main_group, model_group in zip(shard_main_groups,
model_groups):
for shard_main_param, model_param in zip(shard_main_group,
model_group):
param_range_map = self.get_model_param_range_map(model_param)
world_range = param_range_map["gbuf_world"]
assert world_range.size == shard_main_param.nelement()
model_id, dtype = self.model_param_gbuf_map[model_param]
model_param_buffer = self.param_buffers[model_id][dtype]
shard_model_param = model_param_buffer.view(-1) \
[world_range.start:world_range.end]
shard_model_param.data.copy_(shard_main_param)
# Copy shard groups to model groups.
copy_group_params(self.shard_fp32_from_float16_groups,
self.model_float16_groups)
copy_group_params(self.shard_fp32_groups,
self.model_fp32_groups)
|