File size: 29,961 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron distributed optimizer."""


import math
import torch

from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper


class Range:
    """
    A range represents a start and end points for indexing a shard
    from a full tensor.
    """
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start

    def normalize(self, start = 0):
        return Range(start, start + self.size)

    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


class DistributedOptimizer(MixedPrecisionOptimizer):
    """Distributed optimizer, for all data types (fp16, bf16, and fp32).

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        use_contiguous_buffers_in_local_ddp: if true, the local DDP model
            is using a contiguous buffer to hold the model grads.
        fp16: if true, the model is running in fp16.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
        models: list of models (i.e., the virtual pipelining models). This
            is used by the distributed optimizer for mapping parameters.
    """

    @classmethod
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
        """
        Build mapping from param reference to grad buffer shard ranges.

        This method builds a mapping from parameter references to grad
        buffer shard ranges, specific to each data-parallel (DP) rank's
        set of 'owned' parameters. Each grad buffer (padded to be an even
        multiple of DP-world-size) is conceptually divided into DP-world-size
        contiguous regions, where each DP rank 'owns' a contiguous regions.
        Ownership in this sense means DP rank is responsible for reducing
        the relevant subset of grads, and updating the relevant subset of
        params.

        This conceptual partitioning of the grad buffer does NOT respect
        parameter boundaries, and as such it is assumed that each created
        range references a shard (or subset) of the full parameter. It is
        easiest to think of each DP rank as operating (i.e., reducing,
        gathering) purely on views into the grad buffer, for all model-to-
        main & main-to-model operations.

        This method creates three ranges:
        - The param's range within the entire grad buffer (i.e., world index).
        - The param's range within the DP rank's local view of the grad buffer.
        - The param's range within itself (i.e., its shard).
        """

        # Param range map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_range_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Param range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_range.start)
            param_local_end = min(
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)

            # Add param, if within local gbuf range.
            if param_local_end > param_local_start:
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world": param_world_range,
                    "gbuf_local": param_local_range,
                    "param" : sub_param_range,
                }

        return param_range_map

    @classmethod
    def build_model_gbuf_range(cls, model, dtype):
        """
        Build mapping between params and their grad buffers.

        This method does the initial setup for the method above. This setup
        includes determining the shard ranges into the DDP's grad buffer for
        each data-parallel (DP) rank. Each DP rank keeps range info for
        all other DP ranks, for the purpose of creating args for
        reduce-scatter and all-gather.
        """

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer range.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)

        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()

        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)

        # Group into dict.
        data = {
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
        }

        return data

    @classmethod
    def build_model_gbuf_range_map(cls, model):
        """
        Create param-to-grad-buffer mappings, for grad buffer data types
        within a specific virtual model.
        """
        return {
            dtype : cls.build_model_gbuf_range(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        """
        Create a reverse of the model_gbuf_ranges, for referencing in
        opposite direction.
        """
        param_gbuf_map = {}
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

    @classmethod
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
        """
        Create optimizer groups.

        Given the set of parameter shard ranges that are owned by the current
        data-parallel (DP) rank, gather the set of parameters that will be
        used (in the method below) to create the current DP's optimizer
        groups.
        """

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group ranges.
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
                    group_index = param_group_map[param]
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)

        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
        group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]

        return group_ranges

    @classmethod
    def build_model_and_main_param_groups(cls,
                                          model_gbuf_ranges,
                                          param_gbuf_map,
                                          opt_group_ranges):
        """
        Create main parameter groups needed for the optimizer step.

        These groups encompass both: 1) groups used by this class, for
        reducing/gather, and 2) groups used by the inner optimizer for the
        parameter update. Given that the conceptual grad buffer partitioning
        (created in earlier method) doesn't respect parameter boundaries,
        the optimizer operates on shards of the model parameters, rather than
        the full parameters.
        """

        # Parameter groups:
        #   model_float16_groups: original float16 parameters
        #   model_fp32_groups: original fp32 parameters
        #   shard_float16_groups: shards of original float16 parameters
        #   shard_fp32_groups: shards of original fp32 parameters
        #   shard_fp32_from_float16_groups: fp32 copy of float16 parameters
        model_float16_groups = []
        model_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

        # Allocate (or slice) each group's param shard.
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            model_float16_params_this_group = []
            model_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            model_float16_groups.append(model_float16_params_this_group)
            model_fp32_groups.append(model_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

                assert model_param.requires_grad

                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]

                # fp16, bf16 params.
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param = shard_model_param.clone().float()
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

                    # Add to group.
                    model_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)

                # fp32 params.
                elif model_param.type() == 'torch.cuda.FloatTensor':
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
                    model_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
                    tensor_parallel.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

            # Update optimizer's params.
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            model_float16_groups,
            model_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 fp16, bf16, params_dtype, grad_scaler, models):
        """
        See top of class definition for argument descriptions.

        The steps in this method create the core mapping between DDP grad
        buffers, parameters, and parameter shard ranges, that is needed for
        converting between model param indexes and main parameter shard
        indexes. This method also updates the optimizer parameter groups
        with the newly created shards.
        """

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            fp16, bf16, params_dtype, grad_scaler, models)

        # Verify that contiguous buffers are being used.
        # - Note: this should already be checked in arguments.py.
        assert use_contiguous_buffers_in_local_ddp

        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)

        # Optimizer ranges.
        self.opt_group_ranges = self.build_optimizer_group_ranges(
            self.optimizer.param_groups,
            self.model_gbuf_ranges)

        # Allocate main param shards.
        (
            self.model_float16_groups,
            self.model_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

        # Initialize param buffers.
        # - These are views on the DDP model's grad buffers, that share
        #   storage & have their own dtype. This is safe because the param
        #   dtype size is always <= grad dtype size.
        self.param_buffers = []
        for model_index, model in enumerate(self.models):
            current_param_buffers = {}
            for dtype, grad_buffer in model._grad_buffers.items():
                param_buffer = torch.tensor(grad_buffer.data.storage()._untyped(),
                                            dtype = params_dtype,
                                            device = grad_buffer.data.device)
                param_buffer = param_buffer[:grad_buffer.numel_padded]
                current_param_buffers[dtype] = param_buffer
            self.param_buffers.append(current_param_buffers)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_ranges ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

    def get_model_param_range_map(self, param):
        """
        Given a model param, get the index sub-range of the param that this
        data-parallel rank owns.
        """
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        return param_range_map

    def get_model_parallel_group(self):
        """
        With the distributed optimizer, the model parallel group is the
        entire world.
        """
        return None

    def state_dict(self):
        """
        The state dict must contain the fp32-from-float16 shards.
        """
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['shard_fp32_from_float16_groups'] = \
            self.shard_fp32_from_float16_groups
        return state_dict

    def load_state_dict(self, state_dict):
        """
        Load the state dict.
        """

        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            if self.fp16:
                print_rank_0('***WARNING*** found an old checkpoint, will not '
                             'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
        for current_group, saved_group in zip(
                self.shard_fp32_from_float16_groups,
                state_dict["shard_fp32_from_float16_groups"]):
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)

    def zero_grad(self, set_to_none=True):
        """
        Zero grads.

        We only need to zero the model related parameters, i.e.,
        model_float16_groups & model_fp32_groups. We additionally zero
        the remaining groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point.
        """
        for groups in (
                self.model_float16_groups,
                self.model_fp32_groups,
                self.shard_float16_groups, # grad empty/unused here?
                self.shard_fp32_groups, # throws grad-access warning
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)


    @staticmethod
    def get_model_buffer_dp_views(model_buffers):
        """
        Get shard views of each of the DDP's param/grad buffers.

        In this nested list, the top level is grouped by the virtual model
        index and the buffer's data type. The sub-level is a list of
        shards of that buffer, where each shard in the list represents
        a contiguous view of the buffer, that is owned by a data-parallel
        rank. The shard boundary does not respect parameter boundaries, and
        so the elements of some parameters are split across data parallel
        ranks.

        Additionally, return references to the entire buffers, for use
        in reduce_scatter_tensor and _all_gather_base.
        """

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Buffer views.
        view_items = []
        for model_index, buffers in enumerate(model_buffers):
            for dtype, buf in buffers.items():

                assert buf.numel() % data_parallel_world_size == 0
                shard_size = int(buf.numel() / data_parallel_world_size)
                buf_views = [buf[(r*shard_size):((r+1)*shard_size)]
                             for r in range(data_parallel_world_size)]
                view_items.append((model_index, dtype, buf, buf_views))

        return view_items


    def get_model_grad_buffer_dp_views(self):
        return self.get_model_buffer_dp_views([
            {dtype : mem_buffer.data}
            for model in self.models
            for dtype, mem_buffer in model._grad_buffers.items()])

    def get_model_param_buffer_dp_views(self):
        return self.get_model_buffer_dp_views(self.param_buffers)

    def reduce_model_grads(self, args, timers):
        """
        Reduce-scatter model grads.

        The DDP's grad buffer is used for the reduce-scatter, and thus no
        tensors are dynamically allocated.

        Note: this is a different order of reduction, versus the non-
        distributed optimizer, which reduces: 1) layernorm grads, 2) all
        grads, 3) embedding grads.
        """

        # All-reduce layer-norm grads (for sequence parallelism).
        timers('layernorm-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        self.allreduce_layernorm_grads(args)
        timers('layernorm-grads-all-reduce').stop()

        # All-reduce embedding grads.
        timers('embedding-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        self.allreduce_embedding_grads(args)
        timers('embedding-grads-all-reduce').stop()

        # Reduce-scatter setup.
        timers('grads-reduce-scatter', log_level=1).start(
            barrier=args.barrier_with_L1_time)
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

        # Reduce-scatter all grads.
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
        for index, (model_index, dtype, gbuf, gbuf_views) \
            in enumerate(gbuf_view_items):

            torch.distributed.reduce_scatter_tensor(
                gbuf_views[data_parallel_rank],
                gbuf,
                group = data_parallel_group,
            )

        timers('grads-reduce-scatter').stop()

    def gather_model_params(self, args, timers):
        """
        All-gather updated model params.

        The DDP's param buffer is used for the all-gather, and thus no
        tensors are dynamically allocated. After the all-gather, the params
        can be copied from the param buffer to the param.
        """

        timers('params-all-gather', log_level=1).start(
            barrier=args.barrier_with_L1_time)

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All param buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, due to grad buffer padding that is
        #   done in distributed.py, and extended to the param buffers. Thus,
        #   all sub-views will have consistent start/end indexes across data
        #   parallel ranks.
        pbuf_view_items = self.get_model_param_buffer_dp_views()
        for index, (model_index, dtype, pbuf, pbuf_views) \
            in enumerate(pbuf_view_items):

            torch.distributed._all_gather_base(
                pbuf,
                pbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

        # Copy from param buffer to each param.
        for model_id, model in enumerate(self.models):
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param, buf_range in param_map.items():
                    param_buf = self.param_buffers[model_id][dtype]
                    param_buf_shard = param_buf[buf_range[0]:buf_range[1]]
                    param.view(-1).detach().copy_(param_buf_shard)

        timers('params-all-gather').stop()

    def _collect_main_grad_data_for_unscaling(self):
        """
        Note: this should be equivalent to the float-16 optimizer's method,
        but writtent differently, so the two should be combined.
        """
        return [
            param.grad.data
            for group in self.optimizer.param_groups
            for param in group["params"]
        ]

    def _get_model_and_main_params_data_float16(self):
        """
        Get aligned list of model and main params.
        """
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.shard_float16_groups,
                                           self.shard_fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data

    def _copy_model_grads_to_main_grads(self):
        """
        Copy model grads to main grads.

        Since this step follows a reduce-scatter through the DDP's grad
        buffer, this method is responsible for copying the updated grads
        from the grad buffer to the main shard's grad field.
        """

        # Utility method for copying group grads.
        def copy_group_grads(model_groups, shard_main_groups):
            for model_group, shard_main_group in zip(model_groups,
                                                     shard_main_groups):
                for model_param, shard_main_param in zip(model_group,
                                                         shard_main_group):

                    param_range_map = self.get_model_param_range_map(model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    model_grad = model_param.main_grad
                    shard_model_grad = model_grad.view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param.grad = shard_model_grad.float()

        # Copy model groups to shard groups.
        copy_group_grads(self.model_float16_groups,
                         self.shard_fp32_from_float16_groups)
        copy_group_grads(self.model_fp32_groups,
                         self.shard_fp32_groups)

    def _copy_main_params_to_model_params(self):
        """
        Copy main params to model params.

        Since this step is followed by an all-gather through the DDP's grad
        buffer, this method is responsible for copying the updated params
        from the main shards into the correct position in the grad buffer.
        """

        # Utility method for copying group params.
        def copy_group_params(shard_main_groups, model_groups):
            for shard_main_group, model_group in zip(shard_main_groups,
                                                     model_groups):
                for shard_main_param, model_param in zip(shard_main_group,
                                                         model_group):

                    param_range_map = self.get_model_param_range_map(model_param)
                    world_range = param_range_map["gbuf_world"]

                    assert world_range.size == shard_main_param.nelement()

                    model_id, dtype = self.model_param_gbuf_map[model_param]
                    model_param_buffer = self.param_buffers[model_id][dtype]

                    shard_model_param = model_param_buffer.view(-1) \
                        [world_range.start:world_range.end]

                    shard_model_param.data.copy_(shard_main_param)

        # Copy shard groups to model groups.
        copy_group_params(self.shard_fp32_from_float16_groups,
                          self.model_float16_groups)
        copy_group_params(self.shard_fp32_groups,
                          self.model_fp32_groups)