File size: 8,531 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Learning rate decay and weight decay incr functions."""

import math

from megatron import print_rank_0


class OptimizerParamScheduler(object):
    """Anneals learning rate and weight decay"""

    def __init__(self, optimizer, max_lr, min_lr,
                 lr_warmup_steps, lr_decay_steps, lr_decay_style,
                 start_wd, end_wd, wd_incr_steps, wd_incr_style,
                 use_checkpoint_opt_param_scheduler=True,
                 override_opt_param_scheduler=False):

        # Class values.
        self.optimizer = optimizer

        self.max_lr = float(max_lr)
        self.min_lr = min_lr
        assert self.min_lr >= 0.0
        assert self.max_lr >= self.min_lr

        self.lr_warmup_steps = lr_warmup_steps
        self.num_steps = 0
        self.lr_decay_steps = lr_decay_steps
        assert self.lr_decay_steps > 0
        assert self.lr_warmup_steps < self.lr_decay_steps

        self.lr_decay_style = lr_decay_style

        self.start_wd = start_wd
        self.end_wd = end_wd
        assert self.start_wd >= 0.0
        assert self.end_wd >= self.start_wd
        self.wd_incr_steps = wd_incr_steps
        self.wd_incr_style = wd_incr_style

        self.override_opt_param_scheduler = override_opt_param_scheduler
        self.use_checkpoint_opt_param_scheduler = use_checkpoint_opt_param_scheduler
        if self.override_opt_param_scheduler:
            assert not self.use_checkpoint_opt_param_scheduler, 'both override and '\
                'use-checkpoint are set.'

        # Set the learning rate
        self.step(0)
        print_rank_0('> learning rate decay style: {}'.format(self.lr_decay_style))


    def get_wd(self):
        """ Weight decay incr functions"""
        if self.num_steps > self.wd_incr_steps:
            return self.end_wd

        if self.wd_incr_style == 'constant':
            assert self.start_wd == self.end_wd
            return self.end_wd

        incr_ratio = float(self.num_steps) / float(self.wd_incr_steps)
        assert incr_ratio >= 0.0
        assert incr_ratio <= 1.0
        delta_wd = self.end_wd - self.start_wd

        if self.wd_incr_style == 'linear':
            coeff = incr_ratio
        elif self.wd_incr_style == 'cosine':
            coeff = 0.5 * (math.cos(math.pi * (1 - incr_ratio)) + 1.0)
        else:
            raise Exception('{} weight decay increment style is not supported.'.format(
                self.wd_incr_style))

        return self.start_wd + coeff * delta_wd


    def get_lr(self):
        """Learning rate decay functions from:
              https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""

        # Use linear warmup for the initial part.
        if self.lr_warmup_steps > 0 and self.num_steps <= self.lr_warmup_steps:
            return self.max_lr * float(self.num_steps) / \
                float(self.lr_warmup_steps)

        # If the learning rate is constant, just return the initial value.
        if self.lr_decay_style == 'constant':
            return self.max_lr

        # For any steps larger than `self.lr_decay_steps`, use `self.min_lr`.
        if self.num_steps > self.lr_decay_steps:
            return self.min_lr

        # If we are done with the warmup period, use the decay style.
        if self.lr_decay_style == 'inverse-square-root':
            warmup_steps = max(self.lr_warmup_steps, 1)
            num_steps = max(self.num_steps, 1)
            lr = self.max_lr * warmup_steps ** 0.5 / (num_steps ** 0.5)
            return max(self.min_lr, lr)

        num_steps_ = self.num_steps - self.lr_warmup_steps
        decay_steps_ = self.lr_decay_steps - self.lr_warmup_steps
        decay_ratio = float(num_steps_) / float(decay_steps_)
        assert decay_ratio >= 0.0
        assert decay_ratio <= 1.0
        delta_lr = self.max_lr - self.min_lr

        if self.lr_decay_style == 'linear':
            coeff = (1.0 - decay_ratio)
        elif self.lr_decay_style == 'cosine':
            coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
        else:
            raise Exception('{} decay style is not supported.'.format(
                self.lr_decay_style))

        return self.min_lr + coeff * delta_lr


    def step(self, increment):
        """Set lr for all parameters groups."""
        self.num_steps += increment
        new_lr = self.get_lr()
        new_wd = self.get_wd()
        for group in self.optimizer.param_groups:
            group['lr'] = new_lr * group.get('lr_mult', 1.0)
            group['weight_decay'] = new_wd * group.get('wd_mult', 1.0)


    def state_dict(self):
        state_dict = {
            'max_lr': self.max_lr,
            'lr_warmup_steps': self.lr_warmup_steps,
            'num_steps': self.num_steps,
            'lr_decay_style': self.lr_decay_style,
            'lr_decay_steps': self.lr_decay_steps,
            'min_lr': self.min_lr,
            'start_wd': self.start_wd,
            'end_wd': self.end_wd,
            'wd_incr_style': self.wd_incr_style,
            'wd_incr_steps': self.wd_incr_steps
        }
        return state_dict


    def _check_and_set(self, cls_value, sd_value, name):
        """Auxiliary function for checking the values in the checkpoint and
        setting them."""
        if self.override_opt_param_scheduler:
            print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
            return cls_value

        if not self.use_checkpoint_opt_param_scheduler:
            assert cls_value == sd_value, \
                f'OptimizerParamScheduler: class input value {cls_value} and checkpoint' \
                f'value {sd_value} for {name} do not match'
        print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
                                                                  name))
        return sd_value


    def load_state_dict(self, sd):

        if 'start_lr' in sd:
            max_lr_ = sd['start_lr']
        else:
            max_lr_ = sd['max_lr']
        self.max_lr = self._check_and_set(self.max_lr, max_lr_,
                                          'learning rate')
        
        self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
                                          'minimum learning rate')

        if 'warmup_iter' in sd:
            lr_warmup_steps_ = sd['warmup_iter']
        elif 'warmup_steps' in sd:
            lr_warmup_steps_ = sd['warmup_steps']
        else:
            lr_warmup_steps_ = sd['lr_warmup_steps']
        self.lr_warmup_steps = self._check_and_set(self.lr_warmup_steps,
                                                lr_warmup_steps_,
                                                'warmup iterations')

        if 'end_iter' in sd:
            lr_decay_steps_ = sd['end_iter']
        elif 'decay_steps' in sd:
            lr_decay_steps_  = sd['decay_steps']
        else:
            lr_decay_steps_ = sd['lr_decay_steps']
        self.lr_decay_steps = self._check_and_set(self.lr_decay_steps, lr_decay_steps_,
                                               'total number of iterations')

        if 'decay_style' in sd:
            lr_decay_style_ = sd['decay_style']
        else:
            lr_decay_style_ = sd['lr_decay_style']
        self.lr_decay_style = self._check_and_set(self.lr_decay_style,
                                               lr_decay_style_,
                                               'learning rate decay style')

        if 'num_iters' in sd:
            num_steps = sd['num_iters']
        else:
            num_steps = sd['num_steps']
        self.step(increment=num_steps)


        if 'start_wd' in sd:
            self.start_wd = self._check_and_set(self.start_wd,
                                                sd['start_wd'],
                                                "start weight decay")
            self.end_wd = self._check_and_set(self.end_wd,
                                                sd['end_wd'],
                                                "end weight decay")
            self.wd_incr_steps = self._check_and_set(self.wd_incr_steps,
                                                sd['wd_incr_steps'],
                                                "total number of weight decay iterations")
            self.wd_incr_style = self._check_and_set(self.wd_incr_style,
                                                sd['wd_incr_style'],
                                                "weight decay incr style")