File size: 7,666 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""General utilities."""

import os
import sys

import torch
from torch.nn.parallel import DistributedDataParallel as torchDDP

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

from megatron import (
    get_args,
    get_adlr_autoresume,
)
from megatron.core import mpu
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate
from megatron.model.module import param_is_not_shared


def unwrap_model(model, module_instances=(torchDDP)):
    return_list = True
    if not isinstance(model, list):
        model = [model]
        return_list = False
    unwrapped_model = []
    for model_module in model:
        while isinstance(model_module, module_instances):
            model_module = model_module.module
        unwrapped_model.append(model_module)
    if not return_list:
        return unwrapped_model[0]
    return unwrapped_model


def calc_params_l2_norm(model):
    """Calculate l2 norm of parameters"""
    args = get_args()
    if not isinstance(model, list):
        model = [model]
    # Remove duplicate params.
    params_data = []
    for model_ in model:
        for param in model_.parameters():
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if is_not_shared and is_not_tp_duplicate:
                if args.bf16:
                    params_data.append(param.data.float())
                else:
                    params_data.append(param.data)
    # Calculate norm
    dummy_overflow_buf = torch.cuda.IntTensor([0])
    norm, _ = multi_tensor_applier(
        amp_C.multi_tensor_l2norm,
        dummy_overflow_buf,
        [params_data],
        False,  # no per-parameter norm
    )
    norm_2 = norm * norm
    # Sum across all model-parallel GPUs.
    torch.distributed.all_reduce(
        norm_2, op=torch.distributed.ReduceOp.SUM, group=mpu.get_model_parallel_group()
    )
    return norm_2.item() ** 0.5


def average_losses_across_data_parallel_group(losses):
    """Reduce a tensor of losses across all GPUs."""
    averaged_losses = torch.cat([loss.clone().detach().view(1) for loss in losses])
    torch.distributed.all_reduce(averaged_losses, group=mpu.get_data_parallel_group())
    averaged_losses = averaged_losses / torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group()
    )

    return averaged_losses


def report_memory(name):
    """Simple GPU memory report."""
    mega_bytes = 1024.0 * 1024.0
    string = name + " memory (MB)"
    string += " | allocated: {}".format(torch.cuda.memory_allocated() / mega_bytes)
    string += " | max allocated: {}".format(
        torch.cuda.max_memory_allocated() / mega_bytes
    )
    string += " | reserved: {}".format(torch.cuda.memory_reserved() / mega_bytes)
    string += " | max reserved: {}".format(
        torch.cuda.max_memory_reserved() / mega_bytes
    )
    if mpu.get_data_parallel_rank() == 0:
        print("[Rank {}] {}".format(torch.distributed.get_rank(), string), flush=True)


def print_params_min_max_norm(optimizer, iteration):
    """Print min, max, and norm of all parameters."""
    index = 0
    rank = torch.distributed.get_rank()
    string = "iteration, rank, index, tensor-model-parallel, min, max, norm\n"
    optimizer_ = optimizer.optimizer
    for param_group in optimizer_.param_groups:
        for param in param_group["params"]:
            index += 1
            min_ = param.data.min()
            max_ = param.data.max()
            norm = torch.linalg.norm(param.data)
            string += "{:7d}, {:4d}, {:4d}, {:2d}, ".format(
                iteration, rank, index, int(param.tensor_model_parallel)
            )
            string += "{:.6E}, {:.6E}, {:.6E}\n".format(min_, max_, norm)
    print(string, flush=True)


def check_adlr_autoresume_termination(
    iteration, model, optimizer, opt_param_scheduler, args
):
    """Check for autoresume signal and exit if it is received."""
    from megatron.checkpointing import save_checkpoint

    autoresume = get_adlr_autoresume()
    # Add barrier to ensure consistnecy.
    torch.distributed.barrier()
    if autoresume.termination_requested():
        if args.save:
            save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
        print_rank_0(">>> autoresume termination request found!")
        if torch.distributed.get_rank() == 0:
            autoresume.request_resume()
        print_rank_0(">>> training terminated. Returning")
        sys.exit(0)


def get_ltor_masks_and_position_ids(
    data, eod_token, reset_position_ids, reset_attention_mask, eod_mask_loss
):
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
    micro_batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = micro_batch_size
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(
        torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
    ).view(att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(micro_batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i + 1) :] -= i + 1 - prev_index
                    prev_index = i + 1

    # Convert attention mask to binary:
    attention_mask = attention_mask < 0.5

    return attention_mask, loss_mask, position_ids


def print_rank_0(message):
    """If distributed is initialized, print only on rank 0."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True)
    else:
        print(message, flush=True)


def is_last_rank():
    return torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1)


def print_rank_last(message):
    """If distributed is initialized, print only on last rank."""
    if torch.distributed.is_initialized():
        if is_last_rank():
            print(message, flush=True)
    else:
        print(message, flush=True)


def is_last_local_rank():
    return get_args().local_rank == (int(os.environ["LOCAL_WORLD_SIZE"]) - 1)


def print_all_nodes(*args, **kwargs):
    """If distributed is initialized, print on the last rank in all nodes."""
    if torch.distributed.is_initialized():
        if is_last_local_rank():
            print(*args, **kwargs)
    else:
        print(*args, **kwargs)