File size: 12,384 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Finetune utilities."""
from functools import partial
import sys
import torch
from megatron import get_args, get_num_microbatches
from megatron import print_rank_0
from megatron import get_timers
from megatron.core import mpu
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import ModelType
import megatron.training
import megatron.utils
from megatron.training import training_log
from megatron.utils import average_losses_across_data_parallel_group
from megatron.utils import calc_params_l2_norm
def process_batch(batch, is_fp16: bool):
"""Process batch and produce inputs for the model."""
tokens = batch['text'].long().cuda().contiguous()
types = batch['types'].long().cuda().contiguous()
labels = batch['label'].long().cuda().contiguous()
attention_mask = batch['padding_mask'].float().cuda().contiguous()
if is_fp16:
attention_mask = attention_mask.half()
return tokens, types, labels, attention_mask
def cross_entropy_loss_func(labels, output_tensor):
logits = output_tensor
# Cross-entropy loss.
loss_func = torch.nn.CrossEntropyLoss()
loss = loss_func(logits.contiguous().float(), labels)
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def _cross_entropy_forward_step(batch, model):
"""Simple forward step with cross-entropy loss."""
timers = get_timers()
args = get_args()
# Get the batch.
timers('batch-generator', log_level=2).start()
try:
batch_ = next(batch)
except BaseException:
batch_ = batch
tokens, types, labels, attention_mask = process_batch(batch_, args.fp16)
timers('batch-generator').stop()
# Forward model.
output_tensor = model(tokens, attention_mask, tokentype_ids=types)
return output_tensor, partial(cross_entropy_loss_func, labels)
def build_data_loader(dataset,
micro_batch_size, num_workers, drop_last,
task_collate_fn=None):
"""Data loader. Note that batch-size is the local (per GPU) batch-size."""
# Sampler.
world_size = mpu.get_data_parallel_world_size()
rank = mpu.get_data_parallel_rank()
sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=world_size, rank=rank)
# Data loader. Note that batch size is the per GPU batch size.
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=micro_batch_size,
sampler=sampler,
shuffle=False,
num_workers=num_workers,
drop_last=drop_last,
pin_memory=True,
collate_fn=task_collate_fn)
return data_loader
def _build_infinite_size_dataloader(dataloader):
"""Build a looped dataloader with infinite size."""
iterator = dataloader.__iter__()
while True:
try:
yield iterator.__next__()
except StopIteration:
iterator = dataloader.__iter__()
def _build_train_valid_dataloaders(train_dataset, valid_dataset,
task_collate_fn=None):
"""Traing and validation dataloaders."""
args = get_args()
print_rank_0('building train and validation dataloaders ...')
# Training dataset.
train_dataloader = build_data_loader(train_dataset, args.micro_batch_size,
args.num_workers, not args.keep_last,
task_collate_fn)
# Set the training iterations.
args.train_iters_per_epoch = len(train_dataloader)
args.train_iters = args.epochs * args.train_iters_per_epoch
# Validation dataset. For this dataset, we do not need to set up
# shuffling so we can just use a simple infinite loop.
valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size,
args.num_workers, not args.keep_last,
task_collate_fn)
valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)
# Now that we've built the data loaders, set batch_size arguments
# to the actual batch size the model will see for this dataset.
# This is necessary so pipeline transfers know what size they are
# and the LR schedule, which is based on samples seen, gets set
# correctly.
args.orig_micro_batch_size = args.micro_batch_size
args.orig_global_batch_size = args.global_batch_size
if hasattr(train_dataset, 'sample_multiplier'):
# If our dataset as a sample_multiplier attribute that means
# each "sample" from the dataset actually has multiple samples
# that will collapse into the batch dimension (for example in
# the RACE dataset that has several options), we need to
# account for that when setting the micro batch size.
args.micro_batch_size *= train_dataset.sample_multiplier
args.global_batch_size *= train_dataset.sample_multiplier
return train_dataloader, valid_dataloader
def _train(model,
optimizer,
opt_param_scheduler,
forward_step,
train_dataloader,
valid_dataloader,
end_of_epoch_callback,
args):
"""Train the model."""
timers = get_timers()
assert get_num_microbatches() == 1, "finetuning with gradient accumulation doesn't currently work"
# Turn on training mode which enables dropout.
for m in model:
m.train()
# Tracking loss.
losses_dict_sum = {}
# Starting epoch and iteration
start_epoch = args.iteration // args.train_iters_per_epoch
start_iteration = args.iteration % args.train_iters_per_epoch
iteration = args.iteration
# Memory reporting flag.
report_memory_flag = True
# For each remaining epoch
timers('interval-time', log_level=0).start(barrier=True)
for epoch in range(start_epoch, args.epochs):
print_rank_0('working on epoch {} ...'.format(epoch + 1))
# Set the data loader epoch to shuffle the index iterator.
train_dataloader.sampler.set_epoch(args.seed + epoch)
# For all the batches in the dataset.
for iteration_, batch in enumerate(train_dataloader):
# Ignore the iterations before starting value
if iteration_ < start_iteration:
continue
# Set to zero so the next epoch does not skip any batches.
start_iteration = 0
# Train for one step.
out = megatron.training.train_step(forward_step, batch, model, optimizer, opt_param_scheduler, args)
losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = out
iteration += 1
# Logging.
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(losses_dict,
losses_dict_sum,
optimizer.param_groups[0]['lr'],
iteration,
optimizer.get_loss_scale().item(),
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
megatron.utils.check_adlr_autoresume_termination(iteration, model,
optimizer, opt_param_scheduler, args)
# Checkpointing
saved_checkpoint = False
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
saved_checkpoint = True
# Evaluation
if args.eval_interval and iteration % args.eval_interval == 0:
prefix = 'iteration {}'.format(iteration)
megatron.training.evaluate_and_print_results(prefix, forward_step,
valid_dataloader, model,
iteration, None, False, args=args)
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if not saved_checkpoint:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
torch.distributed.barrier()
print_rank_0('exiting program at iteration {}'.format(iteration))
sys.exit()
# Checkpointing at the end of each epoch.
if args.save:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
# Callback at the end of each epoch.
if end_of_epoch_callback is not None:
end_of_epoch_callback(model, epoch)
def finetune(train_valid_datasets_provider,
model_provider,
model_type=ModelType.encoder_or_decoder,
forward_step=_cross_entropy_forward_step,
end_of_epoch_callback_provider=None,
task_collate_fn=None):
"""Main finetune function used across all tasks."""
args = get_args()
timers = get_timers()
assert args.rampup_batch_size is None, \
'batch size scaling is not supported for finetuning'
# Train and validation data loaders.
timers('train/valid/test dataset/dataloder', log_level=0).start()
if args.epochs > 0:
train_dataset, valid_dataset = train_valid_datasets_provider()
train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
train_dataset, valid_dataset, task_collate_fn)
else:
args.train_iters = 0
timers('train/valid/test dataset/dataloder').stop()
# Build calback function.
timers('callback function', log_level=0).start()
end_of_epoch_callback = None
if end_of_epoch_callback_provider is not None:
end_of_epoch_callback = end_of_epoch_callback_provider()
timers('callback function').stop()
# Build model, optimizer and learning rate scheduler.
timers('model and optimizer', log_level=0).start()
model, optimizer, opt_param_scheduler = megatron.training.setup_model_and_optimizer(model_provider, model_type, args=args)
timers('model and optimizer').stop()
# If pretrained checkpoint is provided and we have not trained for
# any iteration (i.e., iteration is zero), then load the pretrained
# checkpoint.
timers('pretrained checkpoint', log_level=0).start(barrier=True)
if args.iteration == 0 and args.pretrained_checkpoint is not None:
original_load = args.load
args.load = args.pretrained_checkpoint
original_rng = args.no_load_rng
args.no_load_rng = True
_ = load_checkpoint(model, None, None)
args.load = original_load
args.no_load_rng = original_rng
# This is critical when only model is loaded. We should make sure
# main parameters are also updated.
optimizer.reload_model_params()
timers('pretrained checkpoint').stop()
# Print setup timing.
print_rank_0('done with setups ...')
timers.log(['train/valid/test dataset/dataloder', 'callback function',
'model and optimizer', 'pretrained checkpoint'], barrier=True)
print_rank_0('training ...')
# Finetune the model.
if args.epochs > 0:
_train(model,
optimizer, opt_param_scheduler, forward_step,
train_dataloader, valid_dataloader, end_of_epoch_callback, args)
# Or just evaluate.
else:
if end_of_epoch_callback is not None:
print_rank_0('evaluation only mode, setting epoch to -1')
end_of_epoch_callback(model, epoch=-1, output_predictions=True)
print_rank_0('done :-)')
|