File size: 8,280 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Processing data for pretraining."""

import argparse
import json
import multiprocessing
import os
import sys

sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
import time

import torch

try:
    import nltk

    nltk_available = True
except ImportError:
    nltk_available = False

from megatron.data import indexed_dataset
from megatron.tokenizer import build_tokenizer


# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
    _period_context_fmt = r"""
        \S*                          # some word material
        %(SentEndChars)s             # a potential sentence ending
        \s*                       #  <-- THIS is what I changed
        (?=(?P<after_tok>
            %(NonWord)s              # either other punctuation
            |
            (?P<next_tok>\S+)     #  <-- Normally you would have \s+ here
        ))"""


class IdentitySplitter(object):
    def tokenize(self, *text):
        return text


class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = build_tokenizer(self.args)
        if self.args.split_sentences:
            if not nltk_available:
                print("NLTK is not available to split sentences.")
                exit()
            library = "tokenizers/punkt/{}.pickle".format(self.args.lang)
            print("loading: " + library)
            splitter = nltk.load(library)
            if self.args.keep_newlines:
                # this prevents punkt from eating newlines after sentences
                Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
                    train_text=splitter._params, lang_vars=CustomLanguageVars()
                )
            else:
                Encoder.splitter = splitter

        else:
            Encoder.splitter = IdentitySplitter()

    def encode(self, json_line):
        data = json.loads(json_line)
        ids = {}
        for key in self.args.json_keys:
            text = data[key]
            doc_ids = []
            for sentence in Encoder.splitter.tokenize(text):
                sentence_ids = Encoder.tokenizer.tokenize(sentence)
                if len(sentence_ids) > 0:
                    doc_ids.append(sentence_ids)
            if len(doc_ids) > 0 and self.args.append_eod:
                doc_ids[-1].append(Encoder.tokenizer.eos)
            ids[key] = doc_ids
        return ids, len(json_line)


def get_args():
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title="input data")
    group.add_argument("--input", type=str, required=True, help="Path to input JSON")
    group.add_argument(
        "--json_keys",
        nargs="+",
        default=["text"],
        help="space separate listed of keys to extract from json",
    )
    group.add_argument(
        "--split_sentences", action="store_true", help="Split documents into sentences."
    )
    group.add_argument(
        "--keep_newlines",
        action="store_true",
        help="Keep newlines between sentences when splitting.",
    )

    group = parser.add_argument_group(title="tokenizer")
    group.add_argument(
        "--tokenizer_type",
        type=str,
        required=True,
        choices=[
            "BertWordPieceLowerCase",
            "BertWordPieceCase",
            "GPT2BPETokenizer",
            "SentencePieceTokenizer",
            "PretrainedFromHF",
            "FalconTokenizer",
        ],
        help="What type of tokenizer to use.",
    )
    group.add_argument(
        "--vocab_file", type=str, default=None, help="Path to the vocab file"
    )
    group.add_argument(
        "--merge_file",
        type=str,
        default=None,
        help="Path to the BPE merge file (if necessary).",
    )
    group.add_argument(
        "--append_eod",
        action="store_true",
        help="Append an <eod> token to the end of a document.",
    )
    group.add_argument(
        "--lang",
        type=str,
        default="english",
        help="Language to use for NLTK-powered sentence splitting.",
    )
    group = parser.add_argument_group(title="output data")
    group.add_argument(
        "--output_prefix",
        type=str,
        required=True,
        help="Path to binary output file without suffix",
    )
    group.add_argument(
        "--dataset_impl", type=str, default="mmap", choices=["lazy", "cached", "mmap"]
    )
    group = parser.add_argument_group(title="runtime")
    group.add_argument(
        "--workers",
        type=int,
        required=True,
        help="Number of worker processes to launch",
    )
    group.add_argument(
        "--chunk_size",
        type=int,
        required=True,
        help="Chunk size assigned to each worker process",
    )
    group.add_argument(
        "--log_interval",
        type=int,
        default=100,
        help="Interval between progress updates",
    )
    group.add_argument("--vocab_extra_ids", type=int, default=0)
    group.add_argument(
        "--vocab_extra_ids_list",
        type=str,
        default=None,
        help="comma separated list of special vocab ids to add to the tokenizer",
    )
    group.add_argument(
        "--no_new_tokens",
        action="store_false",
        dest="new_tokens",
        help=(
            "Whether to add special tokens (e.g. CLS, MASK, etc) "
            "in the sentenciepiece tokenizer or not"
        ),
    )
    args = parser.parse_args()
    args.keep_empty = False

    if args.tokenizer_type.lower().startswith("bert"):
        if not args.split_sentences:
            print(
                "Bert tokenizer detected, are you sure you don't want to split sentences?"
            )

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.tensor_model_parallel_size = 1

    return args


def main():
    args = get_args()
    startup_start = time.time()

    print("Opening", args.input)
    fin = open(args.input, "r", encoding="utf-8")

    if nltk_available and args.split_sentences:
        nltk.download("punkt", quiet=True)

    encoder = Encoder(args)
    tokenizer = build_tokenizer(args)
    pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
    encoded_docs = pool.imap(encoder.encode, fin, args.chunk_size)
    # encoded_docs = map(encoder.encode, fin)

    level = "document"
    if args.split_sentences:
        level = "sentence"

    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")
    output_bin_files = {}
    output_idx_files = {}
    builders = {}
    for key in args.json_keys:
        output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level)
        output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level)
        builders[key] = indexed_dataset.make_builder(
            output_bin_files[key],
            impl=args.dataset_impl,
            vocab_size=tokenizer.vocab_size,
        )

    startup_end = time.time()
    proc_start = time.time()
    total_bytes_processed = 0
    print("Time to startup:", startup_end - startup_start)

    for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
        total_bytes_processed += bytes_processed
        for key, sentences in doc.items():
            if len(sentences) == 0:
                continue
            for sentence in sentences:
                builders[key].add_item(torch.IntTensor(sentence))
            builders[key].end_document()
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed / elapsed / 1024 / 1024
            print(
                f"Processed {i} documents",
                f"({i/elapsed} docs/s, {mbs} MB/s).",
                file=sys.stderr,
            )
    print("Done! Now finalizing.")

    for key in args.json_keys:
        builders[key].finalize(output_idx_files[key])


if __name__ == "__main__":
    main()