File size: 10,271 Bytes
9ef89a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
global {
    model_type="llama3"
    ducttape_output=/mnt/cephfs-nvme/shared/experiments_megatron/cpt_llama_3
    repo=/mnt/cephfs-nvme/jpombal/multilinguality_megatron

    external_model_dir=/mnt/cephfs-nvme/shared/experiments_megatron/cpt_llama_3/tower_mix_checkpoints
    external_model_dir_annealing=/mnt/cephfs-nvme/shared/experiments_megatron/cpt_llama_3/tower_mix_checkpoints_annealed
    model_path=/mnt/cephfs-nvme/cache/models--meta-llama--Meta-Llama-3-8B/snapshots/1460c22666392e470910ce3d44ffeb2ab7dbd4df/
    tokenizer_path=/mnt/cephfs-nvme/cache/models--meta-llama--Meta-Llama-3-8B/snapshots/1460c22666392e470910ce3d44ffeb2ab7dbd4df/

    tokenizer_type=PretrainedFromHF

    dataset=(Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en)
    dataset_path=(Dataset: 
            en=/mnt/data_2/shared/tower_llm_data/en/data
            es=/mnt/data_2/shared/tower_llm_data/es/3/0000.json.gz 
            de=/mnt/data_2/shared/tower_llm_data/de/2/0000.json.gz 
            fr=/mnt/data_2/shared/tower_llm_data/fr/1/0000.json.gz 
            nl=/mnt/data_2/shared/tower_llm_data/nl/0000.json.gz 
            pt=/mnt/data_2/shared/tower_llm_data/pt/0000.json.gz              
            it=/mnt/data_2/shared/tower_llm_data/it/0000.json.gz 
            ru=/mnt/data_2/shared/tower_llm_data/ru/6/0000.json.gz
            zh=/mnt/data_2/shared/tower_llm_data/zh/0000.json.gz 
            ko=/mnt/data_2/shared/tower_llm_data/ko/0000.json.gz
            en_de="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
            de_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_fr="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            fr_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_es="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            es_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_it="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            it_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_nl="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            nl_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_pt="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            pt_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_ru="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            ru_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_zh="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            zh_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            en_ko="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" 
            ko_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
        )
    
    is_hf_dataset=(Dataset: 
            en=True 
            es=False
            de=False
            fr=False
            nl=False
            pt=False      
            it=False
            ru=False
            zh=False
            ko=False
            en_de=False
            de_en=False 
            en_fr=False 
            fr_en=False 
            en_es=False 
            es_en=False 
            en_it=False 
            it_en=False 
            en_nl=False 
            nl_en=False
            en_pt=False 
            pt_en=False 
            en_ru=False 
            ru_en=False 
            en_zh=False 
            zh_en=False 
            en_ko=False 
            ko_en=False
        )

    threshold=(Dataset:
                en=516       
                es=275
                de=611
                fr=322
                nl=649
                pt=257
                it=332
                ru=334
                zh=2041
                ko=198
                en_de=100000
                de_en=100000 
                en_fr=100000 
                fr_en=100000 
                en_es=100000 
                es_en=100000 
                en_it=100000 
                it_en=100000 
                en_nl=100000 
                nl_en=100000 
                en_pt=100000 
                pt_en=100000 
                en_ru=100000 
                ru_en=100000 
                en_zh=100000 
                zh_en=100000 
                en_ko=100000 
                ko_en=100000
            )

    # rougly 67% for mc4, 33% for total parallel data
    datamix_weights=(
        DataMix: 
            mc4_parallel_uniform=(
                Dataset:
                    en=670
                    es=670
                    de=670
                    fr=670
                    nl=670
                    pt=670
                    it=670
                    ru=670
                    zh=670
                    ko=670
                    en_de=183
                    de_en=183
                    en_fr=183
                    fr_en=183
                    en_es=183
                    es_en=183
                    en_it=183
                    it_en=183
                    en_nl=183
                    nl_en=183
                    en_pt=183
                    pt_en=183
                    en_ru=183
                    ru_en=183
                    en_zh=183
                    zh_en=183
                    en_ko=183
                    ko_en=183
            )
        )

    datamix_weights_annealing=(
        DataMix: 
            mc4_parallel_uniform=(
                Dataset:
                    en=0
                    es=0
                    de=0
                    fr=0
                    nl=0
                    pt=0
                    it=0
                    ru=0
                    zh=0
                    ko=0
                    en_de=833
                    de_en=833
                    en_fr=833 
                    fr_en=833 
                    en_es=833 
                    es_en=833 
                    en_it=833 
                    it_en=833 
                    en_nl=833 
                    nl_en=833 
                    en_pt=833 
                    pt_en=833 
                    en_ru=833 
                    ru_en=833 
                    en_zh=833 
                    zh_en=833 
                    en_ko=833 
                    ko_en=833
            )
        )


    # number such that final tokens for each language are around 1B
    n_tokens=(Dataset:
                en=1000000000
                es=833333330
                de=833333330
                fr=833333330
                nl=833333330
                pt=833333330
                it=833333330
                ru=500000000
                zh=13888888
                ko=250000000
                en_de=20000000
                de_en=20000000 
                en_fr=20000000 
                fr_en=20000000 
                en_es=20000000 
                es_en=20000000
                en_it=20000000 
                it_en=20000000 
                en_nl=20000000 
                nl_en=20000000 
                en_pt=20000000 
                pt_en=20000000 
                en_ru=20000000 
                ru_en=20000000 
                en_zh=20000000
                zh_en=20000000 
                en_ko=20000000
                ko_en=20000000
            )

    is_parallel=(Dataset:
        en=False
        es=False
        de=False
        fr=False
        nl=False
        pt=False
        it=False
        ru=False
        zh=False
        ko=False
        en_de=True
        de_en=True
        en_fr=True
        fr_en=True
        en_es=True
        es_en=True
        en_it=True
        it_en=True
        en_nl=True
        nl_en=True
        en_pt=True
        pt_en=True
        en_ru=True
        ru_en=True
        en_zh=True
        zh_en=True
        en_ko=True
        ko_en=True
    )   

    lp=(Dataset:
        en=""
        es=""
        de=""
        fr=""
        nl=""
        pt=""
        it=""
        ru=""
        zh=""
        ko=""
        en_de="en-de"
        de_en="de-en"
        en_fr="en-fr"
        fr_en="fr-en"
        en_es="en-es"
        es_en="es-en"
        en_it="en-it"
        it_en="it-en"
        en_nl="en-nl"
        nl_en="nl-en"
        en_pt="en-pt"
        pt_en="pt-en"
        en_ru="en-ru"
        ru_en="ru-en"
        en_zh="en-zh"
        zh_en="zh-en"
        en_ko="en-ko"
        ko_en="ko-en"
    )   

    min_perplexity=50

    size=(Size: 8)

    log_interval=1
    save_interval=635
    eval_interval=635
    train_steps=12700
    train_steps_annealing=0
    
    lr_scheduler=cosine
    warmup_steps=127
    lr=3e-5
    lr_min=3e-6
    weight_decay=0.1
    
    lr_scheduler_annealing=linear
    warmup_steps_annealing=0
    lr_annealing=3e-5
    lr_min_annealing=3e-6

    n_gpus=8
    gpu_ids=0,1,2,3,4,5,6,7
    tp=(TP: 1 2 3 4 5 6 7 8)
    pp=(PP: 1 2 3 4)
    micro_batch_size=4
    grad_accum_steps=12
    vocab_size=128256

    cpu_workers=16
    wikipedia=False
    freeze_layers=""
    posterior_tokens=False
    n_posterior_tokens=0
    eval_iters=1

    seq_length=4096

    glu_activation=swiglu
    kv_channels=""
    layernorm_epsilon=1e-5
}