File size: 4,118 Bytes
9ef89a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gzip
import json
import sys
import pandas as pd
from pathlib import Path
l = sys.argv[-1]
def _close_when_exhausted(file):
with file:
for line in file:
yield json.loads(line)
def open_read_cleaned(filename):
file: TextIO = gzip.open(filename, "rt") # type: ignore
return _close_when_exhausted(file)
def write_json_lines_to_gzip(filename: str, data):
try:
with gzip.open(filename, "wt") as f:
for item in data:
json_line = json.dumps(item)
f.write(json_line + "\n")
finally:
f.close() # Ensure file is closed even if an exception occurs
def write_json_lines(filename: str, data):
try:
with open(filename, "w") as f:
for item in data:
json_line = json.dumps(item)
f.write(json_line + "\n")
finally:
f.close() # Ensure file is closed even if an exception occurs
TEST_SIZE = 10000
TRAIN_LEN = 2_000_000 # 2 million instances is likely enough, since 3.8M yields 9.6G italian tokens
# red pajama (en, de, es, fr, it)
root_dir = "/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered"
# l_datasets = {
# "it": {
# "train": [
# "filtered_it_2023-06_head_documents.jsonl.gz",
# "filtered_it_2022-49_head_documents.jsonl.gz",
# "filtered_it_2022-40_head_documents.jsonl.gz",
# ],
# "test": "filtered_it_2023-14_head_documents.jsonl.gz",
# },
# "es": {
# "train": [
# "filtered_es_2023-06_head_documents.jsonl.gz",
# "filtered_es_2022-49_head_documents.jsonl.gz",
# ],
# "test": "filtered_es_2023-14_head_documents.jsonl.gz",
# },
# "de": {
# "train": [
# "filtered_de_2023-06_head_documents.jsonl.gz",
# "filtered_de_2022-49_head_documents.jsonl.gz",
# ],
# "test": "filtered_de_2023-14_head_documents.jsonl.gz",
# },
# "fr": {
# "train": [
# "filtered_fr_2023-06_head_documents.jsonl.gz",
# "filtered_fr_2022-49_head_documents.jsonl.gz",
# ],
# "test": "filtered_fr_2023-14_head_documents.jsonl.gz",
# },
# "en": {
# "train": [
# "filtered_en_2023-06_head_documents.jsonl.gz",
# ],
# "test": "filtered_en_2023-14_head_documents.jsonl.gz",
# },
# }
obs = []
# train
# append = True
# for d in l_datasets[l]["train"]:
# if append:
# for o in open_read_cleaned(f"{root_dir}/{l}/{d}"):
# obs.append(o)
# print(f"Selected {len(obs)} instances...")
# if len(obs) == TRAIN_LEN:
# append = False
# break
# print("Saving")
# write_json_lines_to_gzip(f"{root_dir}/{l}/train.jsonl.gz", obs)
# test
# obs = []
# for o in open_read_cleaned(f'{root_dir}/{l}/{l_datasets[l]["test"]}'):
# obs.append(o)
# test = pd.DataFrame(obs)
# test = test.sample(n=TEST_SIZE, random_state=42).reset_index(drop=True)
# test.to_json(
# f"/mnt/data/jpombal/tower-results/raw_data/monolingual/red_pajama_filtered.{l}/test.jsonl",
# orient="records",
# lines=True,
# )
# number of words that exceeds by far the number of words for the training data;
# this way we ensure the test data does not overlap
n_words_dict = {
"nl": 933333330,
"pt": 933333330,
"ru": 600000000,
"zh": 33888888,
"ko": 350000000,
}
corpus = open_read_cleaned(
f"/mnt/data/shared/tower_llm_data/webcorpus/{l}/0000.json.gz"
)
n_words = 0
rows = 0
data = []
for doc in corpus:
if l == "zh":
n_words += len(doc["text"])
else:
n_words += len(doc["text"].split(" "))
if n_words >= n_words_dict[l]:
data.append({"text": doc["text"]})
rows += 1
if rows == TEST_SIZE:
break
Path(f"/mnt/data/jpombal/tower-results/raw_data/monolingual/webcorpus.{l}").mkdir(
exist_ok=True, parents=True
)
write_json_lines(
f"/mnt/data/jpombal/tower-results/raw_data/monolingual/webcorpus.{l}/test.jsonl",
data,
)
print("done")
|