File size: 8,017 Bytes
9ef89a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import re
import pytest
import shutil
from pathlib import Path
from typing import Optional, Iterator
from tempfile import TemporaryDirectory
from subprocess import PIPE, Popen


# ===
# = Arguments
# ===
@pytest.fixture(scope="session", params=[1, 2])
def llama_version(request) -> int:
    return request.param


@pytest.fixture(scope="session")
def llama_meta(pytestconfig, llama_version: int ) -> Path:
    if llama_version == 1:
        return pytestconfig.getoption("llama_path")
    return pytestconfig.getoption("llama2_path")


@pytest.fixture(scope="session")
def cache_dir(pytestconfig) -> Optional[Path]:
    return pytestconfig.getoption("cache_path")


@pytest.fixture(scope="session")
def data(pytestconfig) -> Path:
    return pytestconfig.getoption("data_path")


@pytest.fixture(scope="session")
def vocab(pytestconfig) -> Path:
    return pytestconfig.getoption("vocab_path")

@pytest.fixture(scope="session")
def root_dir(pytestconfig) -> TemporaryDirectory:
    prefix = pytestconfig.getoption("tmp_dir")
    prefix = None if prefix is None else str(prefix/"tmp")
    return TemporaryDirectory(prefix=prefix)


# ===
# = Paths
# ===
@pytest.fixture(scope="session")
def root(root_dir, llama_version: int) -> Path:
    return Path(f"{root_dir.name}-{llama_version}")

@pytest.fixture(scope="session")
def llama_meta2mega(root: Path) -> Path:
    return root/"llama-meta2mega"

@pytest.fixture(scope="session")
def llama_hf2mega(root: Path) -> Path:
    return root/"llama-hf2mega"

@pytest.fixture(scope="session")
def vocab_hf2mega(llama_hf2mega: Path) -> Path:
    return llama_hf2mega/"tokenizer.model"

@pytest.fixture(scope="session")
def llama_sharded(root: Path) -> Path:
    return root/"llama-sharded"

@pytest.fixture(scope="session")
def llama_unsharded(root: Path) -> Path:
    return root/"llama-unsharded"

@pytest.fixture(scope="session")
def llama_mega2hf(root: Path) -> Path:
    return root/"llama-mega2hf"

@pytest.fixture(scope="session")
def llama_unsharded2hf(root: Path) -> Path:
    return root/"llama-unsharded2hf"


# ===
# = Utils
# ===
def execute(cmd: list[str]) -> Iterator[str]:
    with Popen(cmd, stdout=PIPE, text=True) as proc:
        yield from map(lambda line: line.strip(), iter(proc.stdout.readline, ""))
        assert proc.wait() == 0


def verify_correctness(our_path: Path, cache_dir: Optional[Path], data: Path,
                       vocab: Path, llama_v: int = 2) -> list[float]:
    llama_version = llama_v
    model_name = "llama" if llama_version == 1 else "llama2"
    distributed_args = ["--nproc_per_node=1", "--nnodes=1",
                        "--node_rank=0", "--master_addr=localhost",
                        "--master_port=8001"]
    main_args = [f"--model_name={model_name}", f"--load={our_path}",
                 f"--data_path={data}", "--no_new_tokens",
                 "--tokenizer_type=SentencePieceTokenizer",
                 "--model_size=7", f"--vocab_file={vocab}"]
    extra_args = ["--hidden_dropout=0.0", "--attention_dropout=0.0", 
                  "--no_bias_dropout_fusion", "--no_bias_gelu_fusion"]
    cmd = ["torchrun"] + distributed_args + ["verify_correctness.py"] \
                       + main_args + extra_args
    if cache_dir is not None:
        cmd.append(f"--huggingface_cache={cache_dir}")
    if llama_version == 1:
        cmd.append("--layernorm_epsilon=1e-6")

    max_errors = []
    for line in execute(cmd):
        if any(key in line for key in ["Iteration", "Max abs", "Abs loss"]):
            print(line)
        if rmatch := re.match(fr"^.*max=([0-9]+\.[0-9]+).*$", line):
            max_errors.append(float(rmatch.group(1)))
    assert sum(max_errors)/len(max_errors) <= 0.001, "Avg max error exceeds tolerance (0.001)"
    return max_errors


def shard(load_dir: Path, save_dir: Path, llama_v: int = 2, tp: int = 1, pp: int = 1):
    llama_version = llama_v
    model_type = "llama" if llama_version == 1 else "llama2"
    cmd = ["python", "tools/checkpoint_util.py", f"--load_dir={load_dir}",
           f"--save_dir={save_dir}", f"--model_type={model_type}", "--true_vocab_size=32000",
           f"--target_tensor_parallel_size={tp}", f"--target_pipeline_parallel_size={pp}"]
    ignores = {"---", "...", "Setting"}
    for line in execute(cmd):
        if all(avoid not in line for avoid in ignores):
            print(line)


def mega2hf(load_dir: Path, out_dir: Path, llama_v: int):
    model_type = "llama" if llama_v == 1 else "llama2"
    with Popen(["python", "weights_conversion/megatron_to_hf.py", f"--model={model_type}",
                f"--input_dir={load_dir}", f"--output_dir={out_dir}"]) as proc:
        assert proc.wait() == 0


# ===
# = Tests
# ===
@pytest.mark.incremental
class TestLlamaWeights:
    def test_path_exists(self, llama_meta: Path):
        assert llama_meta.exists() and llama_meta.is_dir()

    def test_meta2mega(self, llama_meta2mega: Path, llama_meta: Path,
                       llama_version: int,
                       cache_dir: Optional[Path], data: Path, vocab: Path):
        assert not llama_meta2mega.exists()
        model_name = "llama" if llama_version == 1 else "llama2"
        with Popen(["python", Path("weights_conversion")/"hf_to_megatron.py",
                    model_name, "--size=7", f"--out={llama_meta2mega}",
                    f"--cache-dir={llama_meta}"]) as proc:
            assert proc.wait() == 0
        assert llama_meta2mega.exists()
        if llama_version == 1:
            llama_meta = cache_dir
        verify_correctness(llama_meta2mega, llama_meta, data, vocab, llama_v=llama_version)
        shutil.rmtree(llama_meta2mega)  # all future tests will only use llama_hf2mega

    def test_hf2mega(self, llama_hf2mega: Path, cache_dir: Optional[Path],
                     data: Path, vocab_hf2mega: Path, llama_version: int):
        assert not llama_hf2mega.exists()
        model_name = "llama" if llama_version == 1 else "llama2"
        cmd = ["python", Path("weights_conversion")/"hf_to_megatron.py",
               model_name, "--size=7", f"--out={llama_hf2mega}"]
        if cache_dir is not None:
            cmd.append(f"--cache-dir={cache_dir}")
        with Popen(cmd) as proc:
            assert proc.wait() == 0
        assert llama_hf2mega.exists()
        verify_correctness(llama_hf2mega, cache_dir, data, vocab_hf2mega, llama_v=llama_version)

    def test_metallama_verification(self, llama_hf2mega: Path, llama_meta: Path,
                                    llama_version: int, data: Path, vocab: Path):
        verify_correctness(llama_hf2mega, llama_meta, data, vocab, llama_v=llama_version)

    def test_shard_unshard(self, llama_hf2mega: Path, llama_sharded: Path,
                           llama_unsharded: Path, cache_dir: Optional[Path],
                           llama_version: int, data: Path, vocab_hf2mega: Path):
        print("sharding to tp=2, pp=2")
        shard(llama_hf2mega, llama_sharded, llama_v=llama_version, tp=2, pp=2)
        assert llama_sharded.exists()
        print("merging back to tp=1, pp=1")
        shard(llama_sharded, llama_unsharded, llama_v=llama_version, tp=1, pp=1)
        assert llama_unsharded.exists()
        verify_correctness(llama_unsharded, cache_dir, data, vocab_hf2mega, llama_v=llama_version)

    def test_mega2hf(self, llama_hf2mega: Path, llama_mega2hf: Path,
                     cache_dir: Optional[Path], data: Path, vocab_hf2mega: Path,
                     llama_version: int ):
        mega2hf(llama_hf2mega, llama_mega2hf, llama_version)
        verify_correctness(llama_mega2hf, cache_dir, data, vocab_hf2mega, llama_v=llama_version)

    def test_unsharded2hf(self, llama_unsharded: Path, llama_unsharded2hf: Path,
                          cache_dir: Optional[Path], data: Path, vocab_hf2mega: Path,
                          llama_version: int):
        mega2hf(llama_unsharded, llama_unsharded2hf, llama_version)
        verify_correctness(llama_unsharded2hf, cache_dir, data, vocab_hf2mega, llama_v=llama_version)