|
|
|
|
|
"""QQP dataset.""" |
|
|
|
from megatron import print_rank_0 |
|
from tasks.data_utils import clean_text |
|
from .data import GLUEAbstractDataset |
|
|
|
|
|
LABELS = [0, 1] |
|
|
|
|
|
class QQPDataset(GLUEAbstractDataset): |
|
|
|
def __init__(self, name, datapaths, tokenizer, max_seq_length, |
|
test_label=0): |
|
self.test_label = test_label |
|
super().__init__('QQP', name, datapaths, |
|
tokenizer, max_seq_length) |
|
|
|
def process_samples_from_single_path(self, filename): |
|
""""Implement abstract method.""" |
|
print_rank_0(' > Processing {} ...'.format(filename)) |
|
|
|
samples = [] |
|
total = 0 |
|
first = True |
|
is_test = False |
|
with open(filename, 'r') as f: |
|
for line in f: |
|
row = line.strip().split('\t') |
|
if first: |
|
first = False |
|
if len(row) == 3: |
|
is_test = True |
|
print_rank_0(' reading {}, {}, and {} columns and ' |
|
'setting labels to {}'.format( |
|
row[0].strip(), row[1].strip(), |
|
row[2].strip(), self.test_label)) |
|
else: |
|
assert len(row) == 6 |
|
print_rank_0(' reading {}, {}, {}, and {} columns' |
|
' ...'.format( |
|
row[0].strip(), row[3].strip(), |
|
row[4].strip(), row[5].strip())) |
|
continue |
|
|
|
if is_test: |
|
assert len(row) == 3, 'expected length 3: {}'.format(row) |
|
uid = int(row[0].strip()) |
|
text_a = clean_text(row[1].strip()) |
|
text_b = clean_text(row[2].strip()) |
|
label = self.test_label |
|
assert len(text_a) > 0 |
|
assert len(text_b) > 0 |
|
else: |
|
if len(row) == 6: |
|
uid = int(row[0].strip()) |
|
text_a = clean_text(row[3].strip()) |
|
text_b = clean_text(row[4].strip()) |
|
label = int(row[5].strip()) |
|
else: |
|
print_rank_0('***WARNING*** index error, ' |
|
'skipping: {}'.format(row)) |
|
continue |
|
if len(text_a) == 0: |
|
print_rank_0('***WARNING*** zero length a, ' |
|
'skipping: {}'.format(row)) |
|
continue |
|
if len(text_b) == 0: |
|
print_rank_0('***WARNING*** zero length b, ' |
|
'skipping: {}'.format(row)) |
|
continue |
|
assert label in LABELS |
|
assert uid >= 0 |
|
|
|
sample = {'uid': uid, |
|
'text_a': text_a, |
|
'text_b': text_b, |
|
'label': label} |
|
total += 1 |
|
samples.append(sample) |
|
|
|
if total % 50000 == 0: |
|
print_rank_0(' > processed {} so far ...'.format(total)) |
|
|
|
print_rank_0(' >> processed {} samples.'.format(len(samples))) |
|
return samples |
|
|