|
|
|
|
|
"""Race.""" |
|
|
|
from megatron import get_args |
|
from megatron import print_rank_0 |
|
from megatron import get_tokenizer |
|
from megatron.model.multiple_choice import MultipleChoice |
|
import tasks.eval_utils |
|
import tasks.finetune_utils |
|
from tasks.race.data import RaceDataset |
|
from megatron.model import ModelType |
|
|
|
|
|
def train_valid_datasets_provider(): |
|
"""Provide train and validation datasets.""" |
|
args = get_args() |
|
tokenizer = get_tokenizer() |
|
|
|
train_dataset = RaceDataset('training', args.train_data, |
|
tokenizer, args.seq_length) |
|
valid_dataset = RaceDataset('validation', args.valid_data, |
|
tokenizer, args.seq_length) |
|
|
|
return train_dataset, valid_dataset |
|
|
|
|
|
def model_provider(pre_process=True, |
|
post_process=True): |
|
"""Build the model.""" |
|
|
|
model_type = ModelType.encoder_or_decoder |
|
print_rank_0('building multichoice model for RACE ...') |
|
model = MultipleChoice(num_tokentypes=2, |
|
pre_process=pre_process, |
|
post_process=post_process, |
|
model_type=model_type) |
|
return model |
|
|
|
|
|
def metrics_func_provider(): |
|
"""Privde metrics callback function.""" |
|
args = get_args() |
|
tokenizer = get_tokenizer() |
|
|
|
def single_dataset_provider(datapath): |
|
name = datapath.split('RACE')[-1].strip('/').replace('/', '-') |
|
return RaceDataset(name, [datapath], tokenizer, args.seq_length) |
|
|
|
return tasks.eval_utils.accuracy_func_provider(single_dataset_provider) |
|
|
|
|
|
def main(): |
|
model_type = ModelType.encoder_or_decoder |
|
tasks.finetune_utils.finetune(train_valid_datasets_provider, |
|
model_provider, |
|
model_type, |
|
end_of_epoch_callback_provider=metrics_func_provider) |
|
|