|
|
|
|
|
"""GPT zero-shot evaluation."""
|
|
|
|
import math
|
|
|
|
import torch
|
|
|
|
from megatron import get_args
|
|
from megatron import print_rank_0, is_last_rank
|
|
from megatron import get_tokenizer
|
|
from megatron.core import parallel_state, tensor_parallel
|
|
from megatron.checkpointing import load_checkpoint
|
|
from megatron.model import GPTModel
|
|
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
|
|
from megatron.p2p_communication import recv_forward, send_forward
|
|
import tasks.finetune_utils
|
|
import megatron.training
|
|
|
|
from .datasets import build_dataset
|
|
|
|
|
|
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
|
|
from megatron.model import DistributedDataParallel as LocalDDP
|
|
from megatron.model import Float16Module
|
|
|
|
|
|
def _get_model_provider(eval_metric):
|
|
"""Based on evaluation metric set the parallel-output flag and
|
|
return the model provider."""
|
|
|
|
def model_provider(pre_process=True, post_process=True):
|
|
"""Build the model."""
|
|
|
|
if eval_metric == 'loss':
|
|
parallel_output = True
|
|
elif eval_metric == 'accuracy':
|
|
parallel_output = False
|
|
else:
|
|
raise NotImplementedError('output type for {} evaluation metric '
|
|
'is not supported.'.format(eval_metric))
|
|
|
|
print_rank_0('building GPT model ...')
|
|
model = GPTModel(num_tokentypes=0, parallel_output=parallel_output,
|
|
pre_process=pre_process, post_process=post_process)
|
|
|
|
return model
|
|
|
|
return model_provider
|
|
|
|
|
|
def process_batch(batch):
|
|
"""Process batch and produce inputs for the model."""
|
|
args = get_args()
|
|
tokenizer = get_tokenizer()
|
|
|
|
loss_mask = batch['pad_mask'].long().cuda().contiguous().byte()
|
|
tokens_ = batch['text'].long().cuda().contiguous()
|
|
labels = tokens_[:, 1:].contiguous()
|
|
tokens = tokens_[:, :-1].contiguous()
|
|
|
|
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
|
tokens,
|
|
tokenizer.eod,
|
|
args.reset_position_ids,
|
|
args.reset_attention_mask,
|
|
args.eod_mask_loss)
|
|
|
|
return tokens, labels, attention_mask, position_ids, loss_mask
|
|
|
|
|
|
def forward_step(batch, model, eval_metric):
|
|
"""Forward step."""
|
|
|
|
|
|
tokens, labels, attention_mask, position_ids, loss_mask = process_batch(
|
|
batch)
|
|
|
|
|
|
args = get_args()
|
|
args.micro_batch_size = len(labels)
|
|
|
|
input_tensor = recv_forward()
|
|
|
|
|
|
unwrapped_model = unwrap_model(
|
|
model, (torchDDP, LocalDDP, Float16Module))
|
|
unwrapped_model.set_input_tensor(input_tensor)
|
|
output = model(tokens, position_ids, attention_mask)
|
|
|
|
send_forward(output)
|
|
|
|
if parallel_state.is_pipeline_last_stage():
|
|
|
|
if eval_metric == 'loss':
|
|
losses = tensor_parallel.vocab_parallel_cross_entropy(
|
|
output.contiguous().float(), labels.contiguous())
|
|
loss = torch.sum(
|
|
losses.view(-1) * loss_mask.contiguous().view(-1).float())
|
|
return loss
|
|
|
|
|
|
if eval_metric == 'accuracy':
|
|
outputs = torch.argmax(output, -1)
|
|
correct = (outputs == labels).float()
|
|
correct[(1 - loss_mask).bool()] = 1
|
|
correct = correct.prod(-1)
|
|
return correct.sum()
|
|
|
|
raise NotImplementedError('forward method for evaluation metric {} '
|
|
'is not implemented.'.format(eval_metric))
|
|
return None
|
|
|
|
|
|
def evaluate(data_loader, model, eval_metric):
|
|
"""Evaluation."""
|
|
args = get_args()
|
|
|
|
|
|
model.eval()
|
|
|
|
total_output = 0.0
|
|
with torch.no_grad():
|
|
|
|
for iteration, batch in enumerate(data_loader):
|
|
if iteration % args.log_interval == 0:
|
|
print_rank_0('> working on iteration: {}'.format(iteration))
|
|
|
|
output = forward_step(batch, model, eval_metric)
|
|
|
|
|
|
if parallel_state.is_pipeline_last_stage():
|
|
torch.distributed.all_reduce(output,
|
|
group=parallel_state.get_data_parallel_group())
|
|
|
|
total_output += output
|
|
|
|
return total_output
|
|
|
|
|
|
def _evaluate_and_print_results(task, data_loader, model, eval_metric):
|
|
"""Evaluate and print results on screen."""
|
|
|
|
|
|
output = evaluate(data_loader, model, eval_metric)
|
|
|
|
string = ' validation results on {} | '.format(task)
|
|
if is_last_rank():
|
|
if eval_metric == 'loss':
|
|
num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens
|
|
num_original_tokens = data_loader.dataset.num_original_tokens
|
|
val_loss = output / (num_tokenized_tokens - 1)
|
|
ppl = math.exp(min(20, val_loss))
|
|
token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1)
|
|
adjusted_ppl = math.exp(min(20, val_loss * token_ratio))
|
|
string += 'avg loss: {:.4E} | '.format(val_loss)
|
|
string += 'ppl: {:.4E} | '.format(ppl)
|
|
string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl)
|
|
string += 'token ratio: {} |'.format(token_ratio)
|
|
|
|
elif eval_metric == 'accuracy':
|
|
num_examples = len(data_loader.dataset)
|
|
acc = output / num_examples
|
|
string += 'number correct: {:.4E} | '.format(output)
|
|
string += 'total examples: {:.4E} | '.format(num_examples)
|
|
string += 'avg accuracy: {:.4E}'.format(acc)
|
|
|
|
else:
|
|
raise NotImplementedError('evaluation method for {} metric is not '
|
|
'implemented yet.'.format(eval_metric))
|
|
|
|
length = len(string) + 1
|
|
print('-' * length)
|
|
print(string)
|
|
print('-' * length)
|
|
|
|
|
|
def main():
|
|
"""Main program."""
|
|
args = get_args()
|
|
|
|
if args.num_layers_per_virtual_pipeline_stage is not None:
|
|
print("Interleaved pipeline schedule is not yet supported for text generation.")
|
|
exit()
|
|
|
|
if args.task == 'LAMBADA':
|
|
eval_metric = 'accuracy'
|
|
elif args.task == 'WIKITEXT103':
|
|
eval_metric = 'loss'
|
|
else:
|
|
raise NotImplementedError('{} task is not implemented.'.format(
|
|
args.task))
|
|
model_provider_func = _get_model_provider(eval_metric)
|
|
|
|
model = megatron.training.get_model(model_provider_func, wrap_with_ddp=False, args=args)
|
|
if args.load is not None:
|
|
_ = load_checkpoint(model, None, None)
|
|
|
|
assert len(model) == 1, "Above condition should have caught this"
|
|
model = model[0]
|
|
|
|
|
|
dataset = build_dataset(args.task)
|
|
dataloader = tasks.finetune_utils.build_data_loader(dataset, args.micro_batch_size,
|
|
args.num_workers, drop_last=False)
|
|
|
|
|
|
_evaluate_and_print_results(args.task, dataloader, model, eval_metric)
|
|
|
|
print_rank_0('done :-)')
|
|
|