TinyLlama-CPT / multilinguality_megatron /tools /checkpoint_saver_megatron.py
KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
20.7 kB
import os
import sys
import torch
def add_arguments(parser):
group = parser.add_argument_group(title="Megatron saver")
group.add_argument(
"--megatron_path",
type=str,
default=None,
help="Base directory of Megatron repository",
)
group.add_argument(
"--target_tensor_parallel_size",
type=int,
help="Target tensor model parallel size, defaults to the tensor parallel size "
"in the input checkpoint if provided by the loader, otherwise to 1",
)
group.add_argument(
"--target_pipeline_parallel_size",
type=int,
help="Target tensor model parallel size, default to the pipeline parall size "
"in the input checkpoint if provided by the loader, otherwise to 1",
)
def save_checkpoint(queue, args):
# Search in directory above this
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
try:
import megatron.arguments
from megatron import fused_kernels
from megatron.checkpointing import save_checkpoint
from megatron.core import mpu
from megatron.global_vars import get_args, set_global_variables
from megatron.model import ModelType
from megatron.model.enums import PositionEmbeddingType
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
except ModuleNotFoundError:
print(
"Unable to import Megatron, please specify the path to Megatron using --megatron_path. Exiting."
)
exit(1)
def queue_get(name=None):
val = queue.get()
if val == "exit":
print("Loader exited, exiting saver")
exit(1)
if name is not None and args.checking and val["name"] != name:
val_name = val["name"]
print(
f'Unexpected message. Expecting "{name}" but got "{val_name}". Exiting saver.'
)
exit(1)
if name is not None:
print(f"received {name}")
return val
def check_message(msg):
if not args.checking:
return
msg_name = msg.pop("name")
if len(msg.keys()) > 0:
print(f"Unexpected values in {msg_name}:")
for key in msg.keys():
print(f" {key}")
print(
f"Exiting. If you want to ignore this, use the argument --no_checking."
)
exit(1)
md = queue_get()
if args.target_tensor_parallel_size is None:
if hasattr(md, "previous_tensor_parallel_size"):
args.target_tensor_parallel_size = md.previous_tensor_parallel_size
else:
print(
"loader did not provide a tensor parallel size and --target_tensor_parallel_size not provided on command line. "
"Default to 1."
)
args.target_tensor_parallel_size = 1
if args.target_pipeline_parallel_size is None:
if hasattr(md, "previous_pipeline_parallel_size"):
args.target_pipeline_parallel_size = md.previous_pipeline_parallel_size
else:
print(
"loader did not provide a pipeline parallel size and --target_pipeline_parallel_size not provided on command line. "
"Default to 1."
)
args.target_pipeline_parallel_size = 1
# Arguments do sanity checks on the world size, but we don't care,
# so trick it into thinking we are plenty of processes
if (
args.target_tensor_parallel_size is not None
and args.target_pipeline_parallel_size is not None
):
os.environ[
"WORLD_SIZE"
] = f"{args.target_tensor_parallel_size * args.target_pipeline_parallel_size}"
# We want all arguments to come from us
sys.argv = [
"script.py",
"--num_layers",
str(md.num_layers),
"--hidden_size",
str(md.hidden_size),
"--seq_length",
str(md.seq_length),
"--num_attention_heads",
str(md.num_attention_heads),
"--max_position_embeddings",
str(md.max_position_embeddings),
"--tokenizer_type",
str(md.tokenizer_type),
"--tensor_model_parallel_size",
str(args.target_tensor_parallel_size),
"--pipeline_model_parallel_size",
str(args.target_pipeline_parallel_size),
"--no_masked_softmax_fusion",
"--no_bias_gelu_fusion",
"--no_bias_dropout_fusion",
"--use_cpu_initialization",
"--micro_batch_size",
"1",
"--no_load_optim",
"--no_load_rng",
"--no_save_optim",
"--no_save_rng",
"--no_initialization",
"--save_interval",
"1",
"--hidden_dropout",
str(md.hidden_dropout),
"--position_embedding_type",
str(md.position_embedding_type),
"--save",
args.save_dir,
"--ffn_hidden_size",
str(md.ffn_hidden_size),
"--kv_channels",
str(md.kv_channels)
]
if md.num_attention_heads_kv is not None:
sys.argv += ["--num_attention_heads_kv", str(md.num_attention_heads_kv)]
if md.parallel_attn:
sys.argv += ["--parallel_attn"]
if md.parallel_layernorm:
sys.argv += ["--parallel_layernorm"]
if md.use_flash_attn:
sys.argv += ["--use_flash_attn"]
if md.glu_activation is not None:
sys.argv += ["--glu_activation", str(md.glu_activation)]
if md.use_rms_norm:
sys.argv += ["--use_rms_norm"]
if not md.tie_embed_logits:
sys.argv += ["--no_tie_embed_logits"]
if md.lima_dropout:
sys.argv += ["--lima_dropout"]
if md.make_vocab_size_divisible_by is not None:
sys.argv.extend(
["--make_vocab_size_divisible_by", str(md.make_vocab_size_divisible_by)]
)
if md.params_dtype == torch.float16:
sys.argv.append("--fp16")
elif md.params_dtype == torch.bfloat16:
sys.argv.append("--bf16")
margs = megatron.arguments.parse_args()
megatron.arguments.validate_args(margs)
set_global_variables(margs)
margs = get_args()
if hasattr(md, "consumed_train_samples"):
margs.consumed_train_samples = md.consumed_train_samples
margs.consumed_valid_samples = md.consumed_valid_samples
print(
f"Setting consumed_train_samples to {margs.consumed_train_samples}"
f" and consumed_valid_samples to {margs.consumed_valid_samples}"
)
else:
print("consumed_train_samples not provided.")
# Determine how to make our models
if md.model_type == "GPT":
from pretrain_gpt import model_provider
margs.model_type = ModelType.encoder_or_decoder
elif md.model_type == "BERT":
from pretrain_bert import model_provider
margs.model_type = ModelType.encoder_or_decoder
elif md.model_type in {"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}:
from finetune import model_provider
margs.model_name = args.model_type
margs.model_type = ModelType.encoder_or_decoder
else:
raise Exception(f"unrecognized model type: {args.model_type}")
def _get_models(count, dtype, pre_process, post_process):
models = [
model_provider(pre_process, post_process).to(dtype) for _ in range(count)
]
return models
# fake initializing distributed
mpu._DATA_PARALLEL_GROUP = 0
mpu.set_tensor_model_parallel_world_size(args.target_tensor_parallel_size)
mpu.set_pipeline_model_parallel_world_size(args.target_pipeline_parallel_size)
mpu.set_tensor_model_parallel_rank(0)
mpu.set_pipeline_model_parallel_rank(0)
fused_kernels.load(margs)
# Embeddings
embeddings_msg = queue_get("embeddings")
if md.position_embedding_type == PositionEmbeddingType.absolute:
pos_embed = embeddings_msg.pop("position embeddings")
else:
pos_embed = None
orig_word_embed = embeddings_msg.pop("word embeddings")
check_message(embeddings_msg)
# Get lm_head, if available
if not md.tie_embed_logits:
lm_head = queue_get("lm_head").pop("lm_head")
# Deal with padding
if md.true_vocab_size is not None:
# figure out what our padded vocab size is
orig_vocab_size = orig_word_embed.shape[0]
margs.padded_vocab_size = _vocab_size_with_padding(md.true_vocab_size, margs)
# Cut out extra padding we don't need
if orig_vocab_size > margs.padded_vocab_size:
full_word_embed = orig_word_embed[0 : margs.padded_vocab_size, :]
if not md.tie_embed_logits:
full_lm_head = lm_head[: margs.padded_vocab_size, :]
# Expanding embedding to larger size by replicating final entry
elif orig_vocab_size < margs.padded_vocab_size:
padding_size = margs.padded_vocab_size - orig_vocab_size
full_word_embed = torch.cat(
(
orig_word_embed,
orig_word_embed[-1].unsqueeze(0).expand(padding_size, -1),
)
)
if not md.tie_embed_logits:
full_lm_head = torch.cat(
[lm_head, lm_head[-1].unsqueeze(0).expand(padding_size, -1)]
)
# Same size!
else:
full_word_embed = orig_word_embed
if not md.tie_embed_logits:
full_lm_head = lm_head
else:
print(
"Original vocab size not specified, leaving embedding table as-is. "
"If you've changed the tensor parallel size this could cause problems."
)
margs.padded_vocab_size = orig_word_embed.shape[0]
full_word_embed = orig_word_embed
if not md.tie_embed_logits:
full_lm_head = lm_head
# Split into new tensor model parallel sizes
out_word_embed = torch.chunk(
full_word_embed, args.target_tensor_parallel_size, dim=0
)
if not md.tie_embed_logits:
out_lm_head = torch.chunk(full_lm_head, args.target_tensor_parallel_size, dim=0)
# Make models for first pipeline stage and fill in embeddings
mpu.set_pipeline_model_parallel_rank(0)
post_process = args.target_pipeline_parallel_size == 1
models = _get_models(
args.target_tensor_parallel_size, md.params_dtype, True, post_process
)
models_init = models
for tp_rank, model in enumerate(models):
print(
f"word embeddings shape {model.language_model.embedding.word_embeddings.weight.shape}"
)
model.language_model.embedding.word_embeddings.weight.data.copy_(
out_word_embed[tp_rank]
)
if pos_embed is not None:
model.language_model.embedding.position_embeddings.weight.data.copy_(
pos_embed
)
# Make models for last pipeline stage and fill in lm_head, if necessary
if not md.tie_embed_logits:
mpu.set_pipeline_model_parallel_rank(args.target_pipeline_parallel_size - 1)
pre_process = args.target_pipeline_parallel_size == 1
if pre_process:
models = models_init
else:
models = _get_models(
args.target_tensor_parallel_size, md.params_dtype, pre_process, True
)
models_final = models
for tp_rank, model in enumerate(models):
print(f"lm_head shape {model.language_model.lm_head.shape}")
model.language_model.lm_head.data.copy_(out_lm_head[tp_rank])
# Transformer layers
total_layer_num = 0
for pp_rank in range(args.target_pipeline_parallel_size):
# For later pipeline parallel ranks, make the new models
mpu.set_pipeline_model_parallel_rank(pp_rank)
post_process = pp_rank == args.target_pipeline_parallel_size - 1
if pp_rank == 0:
models = models_init
elif (
pp_rank == args.target_pipeline_parallel_size - 1
and not md.tie_embed_logits
):
models = models_final
else:
models = _get_models(
args.target_tensor_parallel_size, md.params_dtype, False, post_process
)
for layer in range(len(models[0].language_model.encoder.layers)):
msg = queue_get(f"transformer layer {total_layer_num}")
# duplicated tensors
input_layernorm_weight = msg.pop("input layernorm weight")
if md.parallel_layernorm:
mlp_layernorm_weight = msg.pop("mlp layernorm weight")
if not md.use_rms_norm:
input_layernorm_bias = msg.pop("input layernorm bias")
if md.parallel_layernorm:
mlp_layernorm_bias = msg.pop("mlp layernorm bias")
if not md.parallel_attn:
post_layernorm_weight = msg.pop("post layernorm weight")
if not md.use_rms_norm:
post_layernorm_bias = msg.pop("post layernorm bias")
if md.use_bias:
dense_bias = msg.pop("dense bias")
mlp_l1_bias = msg.pop("mlp l1 bias")
# Split up the parallel tensors
qkv_weight = torch.chunk(
msg.pop("qkv weight"), args.target_tensor_parallel_size, dim=0
)
if md.use_bias:
qkv_bias = torch.chunk(
msg.pop("qkv bias"), args.target_tensor_parallel_size, dim=0
)
dense_weight = torch.chunk(
msg.pop("dense weight"), args.target_tensor_parallel_size, dim=1
)
if md.glu_activation is None:
mlp_l0_weight = torch.chunk(
msg.pop("mlp l0 weight"), args.target_tensor_parallel_size, dim=0
)
else:
up_weight, gate_weight = torch.chunk(msg.pop("mlp l0 weight"), 2, dim=0)
up_weights = torch.chunk(
up_weight, args.target_tensor_parallel_size, dim=0
)
gate_weights = torch.chunk(
gate_weight, args.target_tensor_parallel_size, dim=0
)
mlp_l0_weight = [
torch.cat([up_weight, gate_weight], dim=0)
for up_weight, gate_weight in zip(up_weights, gate_weights)
]
if md.use_bias:
mlp_l0_bias = torch.chunk(
msg.pop("mlp l0 bias"), args.target_tensor_parallel_size, dim=0
)
mlp_l1_weight = torch.chunk(
msg.pop("mlp l1 weight"), args.target_tensor_parallel_size, dim=1
)
# Save them to the model
for tp_rank in range(args.target_tensor_parallel_size):
l = models[tp_rank].language_model.encoder.layers[layer]
l.input_layernorm.weight.data.copy_(input_layernorm_weight)
if md.parallel_layernorm:
l.mlp_layernorm.weight.data.copy_(mlp_layernorm_weight)
if not md.use_rms_norm:
l.input_layernorm.bias.data.copy_(input_layernorm_bias)
if md.parallel_layernorm:
l.mlp_layernorm.bias.data.copy_(mlp_layernorm_bias)
l.self_attention.query_key_value.weight.data.copy_(qkv_weight[tp_rank])
l.self_attention.dense.weight.data.copy_(dense_weight[tp_rank])
if md.use_bias:
l.self_attention.query_key_value.bias.data.copy_(qkv_bias[tp_rank])
l.self_attention.dense.bias.data.copy_(dense_bias)
if not md.parallel_attn:
l.post_attention_layernorm.weight.data.copy_(post_layernorm_weight)
if not md.use_rms_norm:
l.post_attention_layernorm.bias.data.copy_(post_layernorm_bias)
l.mlp.dense_h_to_4h.weight.data.copy_(mlp_l0_weight[tp_rank])
l.mlp.dense_4h_to_h.weight.data.copy_(mlp_l1_weight[tp_rank])
if md.use_bias:
l.mlp.dense_h_to_4h.bias.data.copy_(mlp_l0_bias[tp_rank])
l.mlp.dense_4h_to_h.bias.data.copy_(mlp_l1_bias)
total_layer_num = total_layer_num + 1
check_message(msg)
if post_process:
msg = queue_get("final layernorm")
final_layernorm_weight = msg.pop("weight")
if not md.use_rms_norm:
final_layernorm_bias = msg.pop("bias")
for tp_rank in range(args.target_tensor_parallel_size):
models[
tp_rank
].language_model.encoder.final_layernorm.weight.data.copy_(
final_layernorm_weight
)
if not md.use_rms_norm:
models[
tp_rank
].language_model.encoder.final_layernorm.bias.data.copy_(
final_layernorm_bias
)
if pp_rank != 0 and md.tie_embed_logits:
# Copy word embeddings to final pipeline rank
models[tp_rank].word_embeddings.weight.data.copy_(
out_word_embed[tp_rank]
)
del final_layernorm_weight
if not md.use_rms_norm:
del final_layernorm_bias
check_message(msg)
msg = queue_get()
if msg != "done" and msg["name"] == "pooler":
if not hasattr(models[0].language_model, "pooler"):
print("ERROR: got a pooler, but model does not have one")
exit(1)
print("received pooler")
pooler_weight = msg.pop("weight")
pooler_bias = msg.pop("bias")
for tp_rank in range(args.target_tensor_parallel_size):
models[tp_rank].language_model.pooler.dense.weight.data.copy_(
pooler_weight
)
models[tp_rank].language_model.pooler.dense.bias.data.copy_(
pooler_bias
)
del pooler_weight
del pooler_bias
check_message(msg)
msg = queue_get()
if msg != "done" and msg["name"] == "lm head":
if not hasattr(models[0], "lm_head"):
print("ERROR: got an lm head, but model does not have one")
exit(1)
print("received lm head")
lm_head_dense_weight = msg.pop("dense weight")
lm_head_dense_bias = msg.pop("dense bias")
lm_head_layernorm_weight = msg.pop("layernorm weight")
lm_head_layernorm_bias = msg.pop("layernorm bias")
for tp_rank in range(args.target_tensor_parallel_size):
models[tp_rank].lm_head.dense.weight.data.copy_(
lm_head_dense_weight
)
models[tp_rank].lm_head.dense.bias.data.copy_(lm_head_dense_bias)
models[tp_rank].lm_head.layernorm.weight.data.copy_(
lm_head_layernorm_weight
)
models[tp_rank].lm_head.layernorm.bias.data.copy_(
lm_head_layernorm_bias
)
check_message(msg)
msg = queue_get()
if msg != "done" and msg["name"] == "binary head":
if not hasattr(models[0], "binary_head"):
print("ERROR: got a binary head, but model does not have one")
exit(1)
print("received binary head")
binary_head_weight = msg.pop("weight")
binary_head_bias = msg.pop("bias")
for tp_rank in range(args.target_tensor_parallel_size):
models[tp_rank].binary_head.weight.data.copy_(binary_head_weight)
models[tp_rank].binary_head.bias.data.copy_(binary_head_bias)
check_message(msg)
msg = queue_get()
if msg != "done":
print("ERROR: got some more data but was expecting to be done")
for tp_rank in range(args.target_tensor_parallel_size):
mpu.set_tensor_model_parallel_rank(tp_rank)
save_checkpoint(md.iteration, [models[tp_rank]], None, None)
print("Done!")