sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
#!/bin/bash
# Stage-1: Prompt a pretrained language model to generate the context-relevant knowledge
# The input contains prompts and current dialogue context, the output is the relevant knowledge
# The size of the pretrained language model is 357M
WORLD_SIZE=8
DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
--nnodes 1 \
--node_rank 0 \
--master_addr localhost \
--master_port 6000"
CHECKPOINT_PATH=<PATH_OF_LANGUAGE_MODEL> (e.g., /357m)
VOCAB_PATH=<PATH_OF_VOCAB_FILE> (e.g., /gpt2-vocab.json)
MERGE_PATH=<PATH_OF_MERGE_FILE> (e.g., /gpt2-merges.txt)
INPUT_PATH=<PATH_OF_PROCESSED_TEST_DATA_FILE> \
(e.g., /testseen_processed.txt)
PROMPT_PATH=<PATH_OF_KNOWLEDGE_GENERATION_PROMPTS> \
(e.g., /testseen_knowledge_prompts.json)
OUTPUT_PATH=<PATH_OF_OUTPUT_GENERATION_FILE> \
(e.g., /testseen_knowledge_generations.txt)
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \
--num_layers 24 \
--hidden_size 1024 \
--num_attention_heads 16 \
--seq_length 2048 \
--max_position_embeddings 2048 \
--micro_batch_size 1 \
--vocab_file ${VOCAB_PATH} \
--merge_file ${MERGE_PATH} \
--load ${CHECKPOINT_PATH} \
--fp16 \
--DDP_impl torch \
--tokenizer_type GPT2BPETokenizer \
--sample_input_file ${INPUT_PATH} \
--sample_output_file ${OUTPUT_PATH} \
--prompt_file ${PROMPT_PATH} \
--prompt_type knowledge \
--num_prompt_examples 10 \
--task MSDP-PROMPT
# NOTE: If you use api for the model generation, please use
# the "--api_prompt" flag (setting this value as True).