|
#!/bin/bash |
|
|
|
GPUS_PER_NODE=8 |
|
|
|
MASTER_ADDR=localhost |
|
MASTER_PORT=6000 |
|
NNODES=1 |
|
NODE_RANK=0 |
|
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) |
|
|
|
DATA_PATH=<Specify path and file prefix>_text_sentence |
|
CHECKPOINT_PATH=<Specify path> |
|
|
|
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" |
|
|
|
python -m torch.distributed.launch $DISTRIBUTED_ARGS \ |
|
pretrain_bert.py \ |
|
--num_layers 24 \ |
|
--hidden_size 1024 \ |
|
--num_attention_heads 16 \ |
|
--micro_batch_size 4 \ |
|
--global_batch_size 32 \ |
|
--seq_length 512 \ |
|
--max_position_embeddings 512 \ |
|
--train_iters 1000000 \ |
|
--save $CHECKPOINT_PATH \ |
|
--load $CHECKPOINT_PATH \ |
|
--data_path $DATA_PATH \ |
|
--vocab_file bert-vocab.txt \ |
|
--data_impl mmap \ |
|
--split 949,50,1 \ |
|
--distributed_backend nccl \ |
|
--lr 0.0001 \ |
|
--lr_decay_style linear \ |
|
--min_lr 1.0e-5 \ |
|
--lr_decay_iters 990000 \ |
|
--weight_decay 1e-2 \ |
|
--clip_grad 1.0 \ |
|
--lr_warmup_fraction .01 \ |
|
--log_interval 100 \ |
|
--save_interval 10000 \ |
|
--eval_interval 1000 \ |
|
--eval_iters 10 \ |
|
--fp16 |
|
|