TinyLlama-CPT / multilinguality_megatron /examples /pretrain_bert_distributed.sh
sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
#!/bin/bash
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DATA_PATH=<Specify path and file prefix>_text_sentence
CHECKPOINT_PATH=<Specify path>
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_bert.py \
--num_layers 24 \
--hidden_size 1024 \
--num_attention_heads 16 \
--micro_batch_size 4 \
--global_batch_size 32 \
--seq_length 512 \
--max_position_embeddings 512 \
--train_iters 1000000 \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data_path $DATA_PATH \
--vocab_file bert-vocab.txt \
--data_impl mmap \
--split 949,50,1 \
--distributed_backend nccl \
--lr 0.0001 \
--lr_decay_style linear \
--min_lr 1.0e-5 \
--lr_decay_iters 990000 \
--weight_decay 1e-2 \
--clip_grad 1.0 \
--lr_warmup_fraction .01 \
--log_interval 100 \
--save_interval 10000 \
--eval_interval 1000 \
--eval_iters 10 \
--fp16