|
#! /bin/bash |
|
|
|
|
|
|
|
RANK=0 |
|
WORLD_SIZE=1 |
|
|
|
PRETRAINED_BERT_PATH=<Specify path of pretrained BERT model> |
|
TEXT_DATA_PATH=<Specify path and file prefix of the text data> |
|
TITLE_DATA_PATH=<Specify path and file prefix od the titles> |
|
CHECKPOINT_PATH=<Specify path> |
|
|
|
|
|
python pretrain_ict.py \ |
|
--num_layers 12 \ |
|
--hidden_size 768 \ |
|
--num_attention_heads 12 \ |
|
--tensor_model_parallel_size 1 \ |
|
--micro_batch_size 32 \ |
|
--seq_length 256 \ |
|
--max_position_embeddings 512 \ |
|
--train_iters 100000 \ |
|
--vocab_file bert-vocab.txt \ |
|
--tokenizer_type BertWordPieceLowerCase \ |
|
--DDP_impl torch \ |
|
--bert_load ${PRETRAINED_BERT_PATH} \ |
|
--log_interval 100 \ |
|
--eval_interval 1000 \ |
|
--eval_iters 10 \ |
|
--retriever_report_topk_accuracies 1 5 10 20 100 \ |
|
--retriever_score_scaling \ |
|
--load $CHECKPOINT_PATH \ |
|
--save $CHECKPOINT_PATH \ |
|
--data_path ${TEXT_DATA_PATH} \ |
|
--titles_data_path ${TITLE_DATA_PATH} \ |
|
--lr 0.0001 \ |
|
--lr_decay_style linear \ |
|
--weight_decay 1e-2 \ |
|
--clip_grad 1.0 \ |
|
--lr_warmup_fraction 0.01 \ |
|
--save_interval 4000 \ |
|
--exit_interval 8000 \ |
|
--query_in_block_prob 0.1 \ |
|
--fp16 |
|
|