|
"""Utility functions used throughout Megatron core""" |
|
from functools import reduce |
|
import operator |
|
|
|
import torch |
|
|
|
from megatron.core import parallel_state |
|
|
|
|
|
def ensure_divisibility(numerator, denominator): |
|
"""Ensure that numerator is divisible by the denominator.""" |
|
assert numerator % denominator == 0, "{} is not divisible by {}".format( |
|
numerator, denominator |
|
) |
|
|
|
|
|
def divide(numerator, denominator): |
|
"""Ensure that numerator is divisible by the denominator and return |
|
the division value.""" |
|
ensure_divisibility(numerator, denominator) |
|
return numerator // denominator |
|
|
|
|
|
class GlobalMemoryBuffer: |
|
"""Global buffer to avoid dynamic memory allocations. |
|
Caller should ensure that buffers of the same name |
|
are not used concurrently.""" |
|
|
|
def __init__(self): |
|
self.buffer = {} |
|
|
|
def get_tensor(self, tensor_shape, dtype, name): |
|
required_len = reduce(operator.mul, tensor_shape, 1) |
|
if self.buffer.get((name, dtype), None) is None or \ |
|
self.buffer[(name, dtype)].numel() < required_len: |
|
self.buffer[(name, dtype)] = \ |
|
torch.empty(required_len, |
|
dtype=dtype, |
|
device=torch.cuda.current_device(), |
|
requires_grad=False) |
|
|
|
return self.buffer[(name, dtype)][0:required_len].view(*tensor_shape) |
|
|
|
def _kernel_make_viewless_tensor(inp, requires_grad): |
|
'''Make a viewless tensor. |
|
|
|
View tensors have the undesirable side-affect of retaining a reference |
|
to the originally-viewed tensor, even after manually setting the '.data' |
|
field. This method creates a new tensor that links to the old tensor's |
|
data, without linking the viewed tensor, referenced via the '._base' |
|
field. |
|
''' |
|
out = torch.empty( |
|
(1,), |
|
dtype = inp.dtype, |
|
device = inp.device, |
|
requires_grad = requires_grad, |
|
) |
|
out.data = inp.data |
|
return out |
|
|
|
|
|
class MakeViewlessTensor(torch.autograd.Function): |
|
''' |
|
Autograd function to make a viewless tensor. |
|
|
|
This function should be used in cases where the computation graph needs |
|
to be propagated, but we only want a viewless tensor (e.g., |
|
ParallelTransformer's hidden_states). Call this function by passing |
|
'keep_graph = True' to 'make_viewless_tensor()'. |
|
''' |
|
|
|
@staticmethod |
|
def forward(ctx, inp, requires_grad): |
|
return _kernel_make_viewless_tensor(inp, requires_grad) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
return grad_output, None |
|
|
|
|
|
def make_viewless_tensor(inp, requires_grad, keep_graph): |
|
''' |
|
Entry-point for creating viewless tensors. |
|
|
|
This method should be used, rather than calling 'MakeViewlessTensor' |
|
or '_kernel_make_viewless_tensor' directly. This method acts as a |
|
switch for determining if an autograd function or a regular method |
|
should be used to create the tensor. |
|
''' |
|
|
|
|
|
if inp._base is None: |
|
return inp |
|
|
|
|
|
if keep_graph: |
|
return MakeViewlessTensor.apply(inp, requires_grad) |
|
else: |
|
return _kernel_make_viewless_tensor(inp, requires_grad) |
|
|
|
def assert_viewless_tensor(tensor, extra_msg = None): |
|
'''Assert that a tensor is not a view (i.e., its '._base' field is |
|
not set).''' |
|
if isinstance(tensor, list): |
|
[ assert_viewless_tensor(t) for t in tensor ] |
|
return tensor |
|
if not isinstance(tensor, torch.Tensor): |
|
return tensor |
|
assert tensor._base is None, ( |
|
"Ensure tensor._base is None before setting tensor.data or storing " |
|
"tensor to memory buffer. Otherwise, a memory leak will occur (and " |
|
"likely accumulate over iterations). %s" |
|
) % extra_msg |
|
return tensor |
|
|
|
def safely_set_viewless_tensor_data(tensor, new_data_tensor): |
|
'''Safely set tensor's '.data' field. |
|
|
|
Check first that the tensor is viewless (i.e., '._base' not set). If not, |
|
raise an exception. |
|
''' |
|
assert_viewless_tensor(tensor, extra_msg = "FYI, tensor._base has shape %s, and new_data_tensor has shape %s." % ("--" if tensor._base is None else tensor._base.shape, new_data_tensor.shape)) |
|
tensor.data = new_data_tensor |
|
|