|
|
|
|
|
"""Blendable dataset.""" |
|
|
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from megatron import print_rank_0 |
|
|
|
class BlendableDataset(torch.utils.data.Dataset): |
|
|
|
|
|
def __init__(self, datasets, weights): |
|
|
|
self.datasets = datasets |
|
num_datasets = len(datasets) |
|
assert num_datasets == len(weights) |
|
|
|
self.size = 0 |
|
for dataset in self.datasets: |
|
self.size += len(dataset) |
|
|
|
|
|
weights = np.array(weights, dtype=np.float64) |
|
sum_weights = np.sum(weights) |
|
assert sum_weights > 0.0 |
|
weights /= sum_weights |
|
|
|
|
|
start_time = time.time() |
|
assert num_datasets < 255 |
|
self.dataset_index = np.zeros(self.size, dtype=np.uint8) |
|
self.dataset_sample_index = np.zeros(self.size, dtype=np.int64) |
|
|
|
from megatron.data import helpers |
|
helpers.build_blending_indices(self.dataset_index, |
|
self.dataset_sample_index, |
|
weights, num_datasets, self.size, |
|
torch.distributed.get_rank() == 0) |
|
print_rank_0('> elapsed time for building blendable dataset indices: ' |
|
'{:.2f} (sec)'.format(time.time() - start_time)) |
|
|
|
|
|
def __len__(self): |
|
return self.size |
|
|
|
|
|
def __getitem__(self, idx): |
|
dataset_idx = self.dataset_index[idx] |
|
sample_idx = self.dataset_sample_index[idx] |
|
return self.datasets[dataset_idx][sample_idx] |
|
|