|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torchvision.datasets import VisionDataset |
|
from PIL import Image |
|
|
|
import os |
|
import os.path |
|
from typing import Any, Callable, cast, Dict, List, Optional, Tuple |
|
import numpy as np |
|
|
|
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: |
|
"""Checks if a file is an allowed extension. |
|
Args: |
|
filename (string): path to a file |
|
extensions (tuple of strings): extensions to consider (lowercase) |
|
Returns: |
|
bool: True if the filename ends with one of given extensions |
|
""" |
|
return filename.lower().endswith(extensions) |
|
|
|
|
|
def is_image_file(filename: str) -> bool: |
|
"""Checks if a file is an allowed image extension. |
|
Args: |
|
filename (string): path to a file |
|
Returns: |
|
bool: True if the filename ends with a known image extension |
|
""" |
|
return has_file_allowed_extension(filename, IMG_EXTENSIONS) |
|
|
|
|
|
def make_dataset( |
|
directory: str, |
|
class_to_idx: Dict[str, int], |
|
data_per_class_fraction: float, |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
) -> List[Tuple[str, int]]: |
|
"""Generates a list of samples of a form (path_to_sample, class). |
|
Args: |
|
directory (str): root dataset directory |
|
class_to_idx (Dict[str, int]): dictionary mapping class name to class index |
|
extensions (optional): A list of allowed extensions. |
|
Either extensions or is_valid_file should be passed. Defaults to None. |
|
is_valid_file (optional): A function that takes path of a file |
|
and checks if the file is a valid file |
|
(used to check of corrupt files) both extensions and |
|
is_valid_file should not be passed. Defaults to None. |
|
Raises: |
|
ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. |
|
Returns: |
|
List[Tuple[str, int]]: samples of a form (path_to_sample, class) |
|
""" |
|
instances = [] |
|
directory = os.path.expanduser(directory) |
|
both_none = extensions is None and is_valid_file is None |
|
both_something = extensions is not None and is_valid_file is not None |
|
if both_none or both_something: |
|
raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") |
|
if extensions is not None: |
|
def is_valid_file(x: str) -> bool: |
|
return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) |
|
is_valid_file = cast(Callable[[str], bool], is_valid_file) |
|
for target_class in sorted(class_to_idx.keys()): |
|
class_index = class_to_idx[target_class] |
|
target_dir = os.path.join(directory, target_class) |
|
if not os.path.isdir(target_dir): |
|
continue |
|
local_instances = [] |
|
for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): |
|
for fname in sorted(fnames): |
|
path = os.path.join(root, fname) |
|
if is_valid_file(path): |
|
item = path, class_index |
|
local_instances.append(item) |
|
|
|
instances.extend(local_instances[0:int(len(local_instances) * data_per_class_fraction)]) |
|
|
|
return instances |
|
|
|
|
|
class DatasetFolder(VisionDataset): |
|
"""A generic data loader where the samples are arranged in this way: :: |
|
root/class_x/xxx.ext |
|
root/class_x/xxy.ext |
|
root/class_x/[...]/xxz.ext |
|
root/class_y/123.ext |
|
root/class_y/nsdf3.ext |
|
root/class_y/[...]/asd932_.ext |
|
Args: |
|
root (string): Root directory path. |
|
loader (callable): A function to load a sample given its path. |
|
extensions (tuple[string]): A list of allowed extensions. |
|
both extensions and is_valid_file should not be passed. |
|
transform (callable, optional): A function/transform that takes in |
|
a sample and returns a transformed version. |
|
E.g, ``transforms.RandomCrop`` for images. |
|
target_transform (callable, optional): A function/transform that takes |
|
in the target and transforms it. |
|
is_valid_file (callable, optional): A function that takes path of a file |
|
and check if the file is a valid file (used to check of corrupt files) |
|
both extensions and is_valid_file should not be passed. |
|
Attributes: |
|
classes (list): List of the class names sorted alphabetically. |
|
class_to_idx (dict): Dict with items (class_name, class_index). |
|
samples (list): List of (sample path, class_index) tuples |
|
targets (list): The class_index value for each image in the dataset |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
loader: Callable[[str], Any], |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
classes_fraction=1.0, |
|
data_per_class_fraction=1.0, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
) -> None: |
|
super(DatasetFolder, self).__init__(root, transform=transform, |
|
target_transform=target_transform) |
|
self.classes_fraction = classes_fraction |
|
self.data_per_class_fraction = data_per_class_fraction |
|
classes, class_to_idx = self._find_classes(self.root) |
|
samples = self.make_dataset(self.root, |
|
class_to_idx, |
|
self.data_per_class_fraction, |
|
extensions, |
|
is_valid_file) |
|
if len(samples) == 0: |
|
msg = "Found 0 files in subfolders of: {}\n".format(self.root) |
|
if extensions is not None: |
|
msg += "Supported extensions are: {}".format(",".join(extensions)) |
|
raise RuntimeError(msg) |
|
|
|
self.loader = loader |
|
self.extensions = extensions |
|
self.total = len(samples) |
|
self.classes = classes |
|
self.class_to_idx = class_to_idx |
|
self.samples = samples |
|
self.targets = [s[1] for s in samples] |
|
|
|
@staticmethod |
|
def make_dataset( |
|
directory: str, |
|
class_to_idx: Dict[str, int], |
|
data_per_class_fraction: float, |
|
extensions: Optional[Tuple[str, ...]] = None, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
) -> List[Tuple[str, int]]: |
|
return make_dataset(directory, |
|
class_to_idx, |
|
data_per_class_fraction, |
|
extensions=extensions, |
|
is_valid_file=is_valid_file) |
|
|
|
def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: |
|
""" |
|
Finds the class folders in a dataset. |
|
Args: |
|
dir (string): Root directory path. |
|
Returns: |
|
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. |
|
Ensures: |
|
No class is a subdirectory of another. |
|
""" |
|
all_classes = [d.name for d in os.scandir(dir) if d.is_dir()] |
|
classes = all_classes[0:int(len(all_classes) * self.classes_fraction)] |
|
classes.sort() |
|
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} |
|
return classes, class_to_idx |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
Returns: |
|
tuple: (sample, target) where target is class_index of the target class. |
|
""" |
|
curr_index = index |
|
for x in range(self.total): |
|
try: |
|
path, target = self.samples[curr_index] |
|
sample = self.loader(path) |
|
break |
|
except Exception as e: |
|
curr_index = np.random.randint(0, self.total) |
|
|
|
if self.transform is not None: |
|
sample = self.transform(sample) |
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return sample, target |
|
|
|
def __len__(self) -> int: |
|
return len(self.samples) |
|
|
|
|
|
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') |
|
|
|
|
|
def pil_loader(path: str) -> Image.Image: |
|
|
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('RGB') |
|
|
|
|
|
|
|
def accimage_loader(path: str) -> Any: |
|
import accimage |
|
try: |
|
return accimage.Image(path) |
|
except IOError: |
|
|
|
return pil_loader(path) |
|
|
|
|
|
def default_loader(path: str) -> Any: |
|
from torchvision import get_image_backend |
|
if get_image_backend() == 'accimage': |
|
return accimage_loader(path) |
|
else: |
|
return pil_loader(path) |
|
|
|
|
|
class ImageFolder(DatasetFolder): |
|
"""A generic data loader where the images are arranged in this way: :: |
|
root/dog/xxx.png |
|
root/dog/xxy.png |
|
root/dog/[...]/xxz.png |
|
root/cat/123.png |
|
root/cat/nsdf3.png |
|
root/cat/[...]/asd932_.png |
|
Args: |
|
root (string): Root directory path. |
|
transform (callable, optional): A function/transform that takes in an PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
loader (callable, optional): A function to load an image given its path. |
|
is_valid_file (callable, optional): A function that takes path of an Image file |
|
and check if the file is a valid file (used to check of corrupt files) |
|
Attributes: |
|
classes (list): List of the class names sorted alphabetically. |
|
class_to_idx (dict): Dict with items (class_name, class_index). |
|
imgs (list): List of (image path, class_index) tuples |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
classes_fraction=1.0, |
|
data_per_class_fraction=1.0, |
|
loader: Callable[[str], Any] = default_loader, |
|
is_valid_file: Optional[Callable[[str], bool]] = None, |
|
): |
|
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None, |
|
transform=transform, |
|
target_transform=target_transform, |
|
classes_fraction=classes_fraction, |
|
data_per_class_fraction=data_per_class_fraction, |
|
is_valid_file=is_valid_file) |
|
self.imgs = self.samples |
|
|
|
|