|
|
|
|
|
import time |
|
from enum import IntEnum |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
from megatron import get_args, get_tokenizer, print_rank_0 |
|
from megatron.data.indexed_dataset import make_dataset |
|
from megatron.data.blendable_dataset import BlendableDataset |
|
from megatron.data.dataset_utils import ( |
|
get_train_valid_test_split_, |
|
get_datasets_weights_and_num_samples |
|
) |
|
|
|
|
|
class Role(IntEnum): |
|
system = 0 |
|
prompter = 1 |
|
assistant = 2 |
|
|
|
|
|
class InstructionDataset(Dataset): |
|
def __init__(self, name: str, sample_indices: np.ndarray, |
|
indexed_datasets: dict[str, Dataset], seq_length: int): |
|
|
|
self.indexed_text = indexed_datasets["text"] |
|
self.indexed_role = indexed_datasets["role"] |
|
|
|
|
|
assert np.min(sample_indices) >= 0 |
|
assert np.max(sample_indices) < len(self.indexed_text) |
|
assert len(self.indexed_text) == len(self.indexed_role) |
|
|
|
self.name = name |
|
self.sample_indices = sample_indices |
|
self.seq_length = seq_length |
|
|
|
def __len__(self) -> int: |
|
return self.sample_indices.shape[0] |
|
|
|
def __getitem__(self, idx) -> dict: |
|
|
|
idx = self.sample_indices[idx] |
|
text = self.indexed_text.get(idx) |
|
role = self.indexed_role.get(idx) |
|
assert text is not None and role is not None and text.shape == role.shape |
|
return {"text": text.astype(np.int64), "role": role.astype(np.int64)} |
|
|
|
|
|
def _build_dataset_kernel( |
|
dataset_name: str, |
|
data_prefix, |
|
data_impl: str, |
|
num_samples: int, |
|
seq_length: int, |
|
seed: int, |
|
skip_warmup: bool, |
|
) -> InstructionDataset: |
|
""" |
|
Build dataset. This method is called when individual |
|
train, valid, test datasets are provided |
|
""" |
|
|
|
|
|
indexed_datasets = get_indexed_datasets_(data_prefix, data_impl, skip_warmup) |
|
|
|
total_num_of_documents = len(indexed_datasets["text"]) |
|
|
|
print_rank_0(" {}:".format(dataset_name)) |
|
print_rank_0( |
|
" document indices in [0, {}) total of {} " |
|
"documents".format(total_num_of_documents, total_num_of_documents) |
|
) |
|
|
|
documents = np.arange(start=0, stop=total_num_of_documents, step=1, dtype=np.int32) |
|
np_rng = np.random.RandomState(seed=seed) |
|
dataset = _sample_dataset( |
|
np_rng, documents, indexed_datasets, dataset_name, num_samples, seq_length |
|
) |
|
|
|
return dataset |
|
|
|
|
|
def _build_dataset( |
|
dataset_name: str, |
|
data_prefix, |
|
data_impl: str, |
|
num_samples: int, |
|
seq_length: int, |
|
seed: int, |
|
skip_warmup: bool, |
|
): |
|
dataset = None |
|
if len(data_prefix) == 1: |
|
dataset = _build_dataset_kernel( |
|
dataset_name, |
|
data_prefix[0], |
|
data_impl, |
|
num_samples, |
|
seq_length, |
|
seed, |
|
skip_warmup, |
|
) |
|
else: |
|
|
|
|
|
output = get_datasets_weights_and_num_samples(data_prefix, num_samples) |
|
prefixes, weights, dataset_num_samples = output |
|
|
|
|
|
datasets = [] |
|
for i in range(len(prefixes)): |
|
ds = _build_dataset_kernel( |
|
dataset_name, |
|
prefixes[i], |
|
data_impl, |
|
dataset_num_samples[i], |
|
seq_length, |
|
seed, |
|
skip_warmup, |
|
) |
|
if ds: |
|
datasets.append(ds) |
|
|
|
if datasets: |
|
dataset = BlendableDataset(datasets, weights) |
|
return dataset |
|
|
|
|
|
|
|
def get_indexed_datasets_(data_prefix: str, data_impl: str, |
|
skip_warmup: bool) -> dict[str, Dataset]: |
|
print_rank_0(" > building dataset index ...") |
|
start_time = time.time() |
|
indexed_text = make_dataset(f"{data_prefix}-text", data_impl, skip_warmup) |
|
indexed_role = make_dataset(f"{data_prefix}-role", data_impl, skip_warmup) |
|
assert indexed_text is not None |
|
print_rank_0(" > finished creating indexed dataset in " |
|
f"{time.time() - start_time:4f} seconds") |
|
num_docs = len(indexed_text) |
|
print_rank_0(" number of documents: {}".format(num_docs)) |
|
indices = np.arange(start=0, stop=num_docs, step=1, dtype=np.int32) |
|
n_tokens = np.sum(indexed_text.sizes[indices]) |
|
print_rank_0(" number of tokens: {}".format(n_tokens)) |
|
return {"text": indexed_text, "role": indexed_role} |
|
|
|
|
|
def _sample_dataset(np_rng: np.random.RandomState, document_indices: np.ndarray, |
|
indexed_datasets: dict[str, Dataset], name: str, |
|
num_samples: int, seq_length: int) -> Optional[InstructionDataset]: |
|
"""Compute randomized index of samples for all epochs (num_samples)""" |
|
assert num_samples > 0 |
|
|
|
remaining = num_samples |
|
index_list = [] |
|
while remaining > 0: |
|
count = min(remaining, len(document_indices)) |
|
index_list.append(np_rng.permutation(document_indices)[:count]) |
|
remaining -= count |
|
sample_indices = np.concatenate(index_list) |
|
|
|
dataset = InstructionDataset(name, sample_indices, indexed_datasets, |
|
seq_length) |
|
return dataset |
|
|
|
|
|
def _build_train_valid_test_datasets(data_prefix, data_impl: str, splits_string: str, |
|
train_valid_test_num_samples: list[int], |
|
seq_length: int, seed: int, skip_warmup: bool): |
|
"""Build train, valid, and test datasets.""" |
|
|
|
|
|
indexed_datasets = get_indexed_datasets_(data_prefix, data_impl, skip_warmup) |
|
total_num_of_documents = len(indexed_datasets["text"]) |
|
splits = get_train_valid_test_split_(splits_string, total_num_of_documents) |
|
|
|
|
|
print_rank_0(" > dataset split:") |
|
for index, name in enumerate(["train", "validation", "test"]): |
|
print_rank_0(f" {name}") |
|
print_rank_0(f" document indices in [{splits[index]}, {splits[index + 1]})" |
|
f" total of {splits[index + 1] - splits[index]}") |
|
|
|
|
|
np_rng = np.random.RandomState(seed=seed) |
|
document_indices = np_rng.permutation(total_num_of_documents) |
|
|
|
datasets = {} |
|
for index, name in enumerate(["train", "validation", "test"]): |
|
begin, end = splits[index], splits[index + 1] |
|
if end <= begin: |
|
datasets[name] = None |
|
else: |
|
split_subset = document_indices[begin:end] |
|
num_samples = train_valid_test_num_samples[index] |
|
datasets[name] = _sample_dataset(np_rng, split_subset, indexed_datasets, |
|
name, num_samples, seq_length) |
|
|
|
return datasets["train"], datasets["validation"], datasets["test"] |
|
|
|
|
|
|
|
def build_train_valid_test_datasets(data_prefix: Optional[str], |
|
data_impl: str, |
|
splits_string: str, |
|
train_valid_test_num_samples: list[int], |
|
seq_length: int, |
|
seed: int, |
|
skip_warmup: bool, |
|
train_data_prefix=None, |
|
valid_data_prefix=None, |
|
test_data_prefix=None, |
|
): |
|
|
|
"""Build train, valid, and test datasets.""" |
|
if data_prefix: |
|
print_rank_0("Single data path provided for train, valid & test") |
|
|
|
if len(data_prefix) == 1: |
|
return _build_train_valid_test_datasets( |
|
data_prefix[0], |
|
data_impl, |
|
splits_string, |
|
train_valid_test_num_samples, |
|
seq_length, |
|
seed, |
|
skip_warmup, |
|
) |
|
|
|
|
|
( |
|
prefixes, |
|
weights, |
|
datasets_train_valid_test_num_samples, |
|
) = get_datasets_weights_and_num_samples( |
|
data_prefix, train_valid_test_num_samples |
|
) |
|
|
|
|
|
train_datasets = [] |
|
valid_datasets = [] |
|
test_datasets = [] |
|
for i in range(len(prefixes)): |
|
train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( |
|
prefixes[i], |
|
data_impl, |
|
splits_string, |
|
datasets_train_valid_test_num_samples[i], |
|
seq_length, |
|
seed, |
|
skip_warmup, |
|
) |
|
if train_ds: |
|
train_datasets.append(train_ds) |
|
if valid_ds: |
|
valid_datasets.append(valid_ds) |
|
if test_ds: |
|
test_datasets.append(test_ds) |
|
|
|
|
|
blending_train_dataset = None |
|
if train_datasets: |
|
blending_train_dataset = BlendableDataset(train_datasets, weights) |
|
blending_valid_dataset = None |
|
if valid_datasets: |
|
blending_valid_dataset = BlendableDataset(valid_datasets, weights) |
|
blending_test_dataset = None |
|
if test_datasets: |
|
blending_test_dataset = BlendableDataset(test_datasets, weights) |
|
|
|
return (blending_train_dataset, blending_valid_dataset, blending_test_dataset) |
|
else: |
|
print_rank_0( |
|
"Separate data paths provided for train, valid & test. Split string will be ignored." |
|
) |
|
train_dataset, valid_dataset, test_dataset = None, None, None |
|
|
|
if train_data_prefix is not None: |
|
train_dataset = _build_dataset( |
|
"train", |
|
train_data_prefix, |
|
data_impl, |
|
train_valid_test_num_samples[0], |
|
seq_length, |
|
seed, |
|
skip_warmup, |
|
) |
|
|
|
if valid_data_prefix is not None: |
|
valid_dataset = _build_dataset( |
|
"valid", |
|
valid_data_prefix, |
|
data_impl, |
|
train_valid_test_num_samples[1], |
|
seq_length, |
|
seed, |
|
False, |
|
) |
|
|
|
if test_data_prefix is not None: |
|
test_dataset = _build_dataset( |
|
"test", |
|
test_data_prefix, |
|
data_impl, |
|
train_valid_test_num_samples[2], |
|
seq_length, |
|
seed, |
|
False, |
|
) |
|
return train_dataset, valid_dataset, test_dataset |
|
|
|
|
|
def round_to_multiple_of(x: int, y: int) -> int: |
|
return ((x + y - 1) // y) * y |
|
|
|
|
|
def instruction_collator(data): |
|
args = get_args() |
|
tokenizer = get_tokenizer() |
|
pad_id = tokenizer.pad |
|
seq_len = args.seq_length |
|
|
|
if args.variable_seq_lengths: |
|
max_sample_length = max(len(x["text"]) for x in data) |
|
seq_len = min(args.seq_length, round_to_multiple_of(max_sample_length, 16)) |
|
seq_len += 1 |
|
|
|
|
|
batch_size = len(data) |
|
attention_mask = torch.ones((batch_size, seq_len), dtype=torch.long) |
|
role = torch.full_like(attention_mask, -1) |
|
input = torch.full_like(attention_mask, pad_id) |
|
|
|
|
|
for i, x in enumerate(data): |
|
t = x["text"] |
|
r = x["role"] |
|
l = len(t) |
|
|
|
if l < seq_len: |
|
attention_mask[i, l:] = 0 |
|
input[i, :l] = torch.from_numpy(t) |
|
role[i, :l] = torch.from_numpy(r) |
|
else: |
|
input[i] = torch.from_numpy(t[:seq_len]) |
|
role[i] = torch.from_numpy(r[:seq_len]) |
|
|
|
assistant_mask = (role == Role.assistant.value).long() |
|
pad_mask = (input == pad_id).long() |
|
return {"text": input, "attention_mask": attention_mask, |
|
"assistant_mask": assistant_mask, "pad_mask": pad_mask} |
|
|