|
|
|
|
|
"""GPT-2 model.""" |
|
|
|
import torch |
|
|
|
from megatron import get_args |
|
from megatron.core import tensor_parallel |
|
from .module import MegatronModule |
|
|
|
from .enums import AttnMaskType |
|
from .language_model import parallel_lm_logits |
|
import megatron.model.language_model |
|
from .utils import init_method_normal |
|
from .utils import scaled_init_method_normal |
|
|
|
|
|
def post_language_model_processing(lm_output, labels, logit_weights, |
|
parallel_output, |
|
fp16_lm_cross_entropy): |
|
|
|
|
|
output = parallel_lm_logits( |
|
lm_output, |
|
logit_weights, |
|
parallel_output) |
|
|
|
if labels is None: |
|
|
|
return None, output.transpose(0,1).contiguous() |
|
else: |
|
|
|
labels = labels.transpose(0,1).contiguous() |
|
if fp16_lm_cross_entropy: |
|
assert output.dtype == torch.half |
|
loss = tensor_parallel.vocab_parallel_cross_entropy(output, labels) |
|
else: |
|
loss = tensor_parallel.vocab_parallel_cross_entropy(output.float(), labels) |
|
|
|
|
|
loss = loss.transpose(0,1).contiguous() |
|
return loss, output.transpose(0, 1).contiguous() |
|
|
|
|
|
class GPTModel(MegatronModule): |
|
"""GPT-2 Language model.""" |
|
|
|
def __init__(self, |
|
num_tokentypes=0, |
|
parallel_output=True, |
|
pre_process=True, |
|
post_process=True, |
|
model_type=None): |
|
|
|
args = get_args() |
|
super(GPTModel, self).__init__(share_word_embeddings=args.tie_embed_logits) |
|
self.tie_embed_logits = args.tie_embed_logits |
|
|
|
self.parallel_output = parallel_output |
|
self.pre_process = pre_process |
|
self.post_process = post_process |
|
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy |
|
|
|
|
|
self.language_model, self._language_model_key = megatron.model.language_model.get_language_model( |
|
num_tokentypes=num_tokentypes, |
|
add_pooler=False, |
|
encoder_attn_mask_type=AttnMaskType.causal, |
|
init_method=init_method_normal(args.init_method_std), |
|
scaled_init_method=scaled_init_method_normal(args.init_method_std, |
|
args.num_layers), |
|
pre_process=self.pre_process, |
|
post_process=self.post_process, |
|
args=args, |
|
model_type=model_type) |
|
|
|
if self.tie_embed_logits: |
|
self.initialize_word_embeddings(init_method_normal, args) |
|
|
|
def set_input_tensor(self, input_tensor): |
|
"""See megatron.model.transformer.set_input_tensor()""" |
|
self.language_model.set_input_tensor(input_tensor) |
|
|
|
def forward(self, input_ids, position_ids, attention_mask, labels=None, |
|
tokentype_ids=None, inference_params=None): |
|
|
|
lm_output = self.language_model( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
inference_params=inference_params) |
|
|
|
if self.post_process: |
|
return post_language_model_processing( |
|
lm_output, labels, |
|
self.word_embeddings_weight(), |
|
self.parallel_output, |
|
self.fp16_lm_cross_entropy) |
|
else: |
|
return lm_output |
|
|
|
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): |
|
state_dict_ = {} |
|
state_dict_[self._language_model_key] \ |
|
= self.language_model.state_dict_for_save_checkpoint( |
|
prefix=prefix, keep_vars=keep_vars) |
|
|
|
if self.post_process and not self.pre_process and self.tie_embed_logits: |
|
state_dict_[self._word_embeddings_for_head_key] \ |
|
= self.word_embeddings.state_dict(prefix=prefix, |
|
keep_vars=keep_vars) |
|
return state_dict_ |
|
|
|
def load_state_dict(self, state_dict, strict=True): |
|
"""Customized load.""" |
|
|
|
|
|
if self.post_process and not self.pre_process and self.tie_embed_logits: |
|
self.word_embeddings.load_state_dict( |
|
state_dict[self._word_embeddings_for_head_key], strict=strict) |
|
if self._language_model_key in state_dict: |
|
state_dict = state_dict[self._language_model_key] |
|
self.language_model.load_state_dict(state_dict, strict=strict) |
|
|