sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
# Extracted from: https://github.com/facebookresearch/llama
from typing import Optional
import torch
def precompute_freqs_cis(
dim: int, end: int, theta: float = 10000.0, scaling_factor: float = 1.0
) -> torch.Tensor:
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
t = torch.arange(end, device=freqs.device).float() / scaling_factor # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
return torch.polar(torch.ones_like(freqs), freqs) # complex64
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[0], x.shape[-1])
shape = [d if i == 0 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = freqs_cis.to(xq.device)
if position_ids is None:
# we assume position_ids to be torch.arange(seq_len)
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
# freqs_cis: [seq_len, 1, 1, head_dim//2] (complex64)
else:
# use specified position_ids, possibly not monotonically increasing
# tensor shapes & tpyes:
# xq_: [seq_len, batch_size, heads, head_dim//2] (complex64)
# position_ids: [batch_size, seq_len] (long)
position_ids = position_ids.to(xq.device) # normally already on correct device
assert position_ids.shape == (xq_.shape[1], xq_.shape[0])
assert (freqs_cis.shape[1] == xq_.shape[-1])
freqs_cis = freqs_cis[position_ids].transpose(0, 1).unsqueeze(-2)
# freqs_cis: [seq_len, batch_size, 1, head_dim//2] (complex64)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)