|
|
|
|
|
from commons import print_separator |
|
from commons import initialize_distributed |
|
import mpu |
|
import torch |
|
import sys |
|
sys.path.append("../..") |
|
|
|
|
|
def test_initialize_model_parallel(tensor_model_parallel_size): |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print('> testing initialize_model_parallel with size {} ...'.format( |
|
tensor_model_parallel_size)) |
|
tensor_model_parallel_size_ = min(tensor_model_parallel_size, |
|
torch.distributed.get_world_size()) |
|
assert not mpu.model_parallel_is_initialized() |
|
mpu.initialize_model_parallel(tensor_model_parallel_size_) |
|
assert mpu.model_parallel_is_initialized() |
|
|
|
|
|
def check(group, world_size, rank): |
|
assert world_size == torch.distributed.get_world_size(group=group) |
|
assert rank == torch.distributed.get_rank(group=group) |
|
|
|
|
|
world_size = tensor_model_parallel_size_ |
|
rank = torch.distributed.get_rank() % tensor_model_parallel_size_ |
|
assert world_size == mpu.get_tensor_model_parallel_world_size() |
|
assert rank == mpu.get_tensor_model_parallel_rank() |
|
check(mpu.get_tensor_model_parallel_group(), world_size, rank) |
|
|
|
|
|
world_size = torch.distributed.get_world_size() // tensor_model_parallel_size_ |
|
rank = torch.distributed.get_rank() // tensor_model_parallel_size |
|
assert world_size == mpu.get_data_parallel_world_size() |
|
assert rank == mpu.get_data_parallel_rank() |
|
check(mpu.get_data_parallel_group(), world_size, rank) |
|
|
|
|
|
mpu.destroy_model_parallel() |
|
|
|
torch.distributed.barrier() |
|
if torch.distributed.get_rank() == 0: |
|
print('>> passed the test :-)') |
|
|
|
|
|
def test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size_): |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print('> testing get_tensor_model_parallel_src_rank with size {} ...'.format( |
|
tensor_model_parallel_size_)) |
|
tensor_model_parallel_size = min(tensor_model_parallel_size_, |
|
torch.distributed.get_world_size()) |
|
assert not mpu.model_parallel_is_initialized() |
|
mpu.initialize_model_parallel(tensor_model_parallel_size) |
|
assert mpu.model_parallel_is_initialized() |
|
|
|
|
|
src_rank = torch.distributed.get_rank() - mpu.get_tensor_model_parallel_rank() |
|
assert mpu.get_tensor_model_parallel_src_rank() == src_rank |
|
|
|
|
|
mpu.destroy_model_parallel() |
|
|
|
torch.distributed.barrier() |
|
if torch.distributed.get_rank() == 0: |
|
print('>> passed the test :-)') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
initialize_distributed() |
|
world_size = torch.distributed.get_world_size() |
|
tensor_model_parallel_size = 1 |
|
while tensor_model_parallel_size <= world_size: |
|
print_separator('test initialize model parallel') |
|
test_initialize_model_parallel(tensor_model_parallel_size) |
|
print_separator('test model parallel source rank') |
|
test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size) |
|
tensor_model_parallel_size *= 2 |
|
|