sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from commons import print_separator
from commons import initialize_distributed
import mpu
import torch
import sys
sys.path.append("../..")
def test_initialize_model_parallel(tensor_model_parallel_size):
if torch.distributed.get_rank() == 0:
print('> testing initialize_model_parallel with size {} ...'.format(
tensor_model_parallel_size))
tensor_model_parallel_size_ = min(tensor_model_parallel_size,
torch.distributed.get_world_size())
assert not mpu.model_parallel_is_initialized()
mpu.initialize_model_parallel(tensor_model_parallel_size_)
assert mpu.model_parallel_is_initialized()
# Checks.
def check(group, world_size, rank):
assert world_size == torch.distributed.get_world_size(group=group)
assert rank == torch.distributed.get_rank(group=group)
# Model parallel.
world_size = tensor_model_parallel_size_
rank = torch.distributed.get_rank() % tensor_model_parallel_size_
assert world_size == mpu.get_tensor_model_parallel_world_size()
assert rank == mpu.get_tensor_model_parallel_rank()
check(mpu.get_tensor_model_parallel_group(), world_size, rank)
# Data parallel.
world_size = torch.distributed.get_world_size() // tensor_model_parallel_size_
rank = torch.distributed.get_rank() // tensor_model_parallel_size
assert world_size == mpu.get_data_parallel_world_size()
assert rank == mpu.get_data_parallel_rank()
check(mpu.get_data_parallel_group(), world_size, rank)
# Reset groups
mpu.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print('>> passed the test :-)')
def test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size_):
if torch.distributed.get_rank() == 0:
print('> testing get_tensor_model_parallel_src_rank with size {} ...'.format(
tensor_model_parallel_size_))
tensor_model_parallel_size = min(tensor_model_parallel_size_,
torch.distributed.get_world_size())
assert not mpu.model_parallel_is_initialized()
mpu.initialize_model_parallel(tensor_model_parallel_size)
assert mpu.model_parallel_is_initialized()
# Checks
src_rank = torch.distributed.get_rank() - mpu.get_tensor_model_parallel_rank()
assert mpu.get_tensor_model_parallel_src_rank() == src_rank
# Reset groups
mpu.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print('>> passed the test :-)')
if __name__ == '__main__':
initialize_distributed()
world_size = torch.distributed.get_world_size()
tensor_model_parallel_size = 1
while tensor_model_parallel_size <= world_size:
print_separator('test initialize model parallel')
test_initialize_model_parallel(tensor_model_parallel_size)
print_separator('test model parallel source rank')
test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size)
tensor_model_parallel_size *= 2