|
|
|
|
|
from commons import print_separator |
|
from commons import initialize_distributed |
|
import mpu |
|
import torch |
|
import sys |
|
sys.path.append("../..") |
|
|
|
|
|
def test_set_cuda_rng_state(tensor_model_parallel_size): |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print('> testing set_rng_state with size {} ...'. |
|
format(tensor_model_parallel_size)) |
|
|
|
mpu.initialize_model_parallel(tensor_model_parallel_size) |
|
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() |
|
|
|
size = 123 |
|
seed = 1234 |
|
torch.cuda.manual_seed(1234) |
|
tensor = torch.cuda.FloatTensor(size) |
|
|
|
|
|
rng_state = torch.cuda.get_rng_state() |
|
rng_state_copy = rng_state.clone() |
|
|
|
|
|
for _ in range(5): |
|
torch.randn(size, out=tensor) |
|
result_1 = tensor.clone() |
|
|
|
assert rng_state.sub(rng_state_copy).max() == 0 |
|
assert torch.cuda.get_rng_state().sub(rng_state_copy).max() > 0 |
|
|
|
|
|
new_rng_state = torch.cuda.get_rng_state() |
|
max_diff = new_rng_state.sub(rng_state).max() |
|
print(' max diff in rng state (should be non-zero) on global rank {}: {}'. |
|
format(torch.distributed.get_rank(), max_diff)) |
|
assert max_diff > 0 |
|
|
|
|
|
mpu.random._set_cuda_rng_state(rng_state) |
|
for _ in range(5): |
|
torch.randn(size, out=tensor) |
|
mpu.random._set_cuda_rng_state(rng_state) |
|
for _ in range(5): |
|
torch.randn(size, out=tensor) |
|
result_2 = tensor.clone() |
|
|
|
|
|
error = result_2.sub(result_1).abs().max() |
|
print(' max error in generated tensors (should be zero) on ' |
|
'global rank {}: {}'.format(torch.distributed.get_rank(), error)) |
|
assert error < 1.0e-6 |
|
|
|
|
|
error = rng_state.sub(rng_state_copy).max() |
|
print(' max error in rng state (should be zero) on global rank {}: {}'. |
|
format(torch.distributed.get_rank(), error)) |
|
assert error == 0 |
|
|
|
|
|
mpu.destroy_model_parallel() |
|
|
|
torch.distributed.barrier() |
|
if torch.distributed.get_rank() == 0: |
|
print('>> passed the test :-)') |
|
|
|
|
|
def test_cuda_rng_tracker(tensor_model_parallel_size): |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print('> testing cuda rng tracker with size {} ...'. |
|
format(tensor_model_parallel_size)) |
|
|
|
mpu.initialize_model_parallel(tensor_model_parallel_size) |
|
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() |
|
|
|
seed_1 = 1234 |
|
seed_2 = 4321 |
|
size = [12, 21] |
|
tensor = torch.cuda.FloatTensor(size) |
|
|
|
|
|
torch.cuda.manual_seed(seed_1) |
|
torch.randn(size, out=tensor) |
|
target_11 = tensor.clone() |
|
torch.randn(size, out=tensor) |
|
target_12 = tensor.clone() |
|
|
|
|
|
torch.cuda.manual_seed(seed_2) |
|
torch.randn(size, out=tensor) |
|
target_21 = tensor.clone() |
|
torch.randn(size, out=tensor) |
|
target_22 = tensor.clone() |
|
|
|
|
|
|
|
torch.cuda.manual_seed(seed_1) |
|
mpu.get_cuda_rng_tracker().add('test', seed_2) |
|
|
|
torch.randn(size, out=tensor) |
|
result_11 = tensor.clone() |
|
|
|
with mpu.get_cuda_rng_tracker().fork('test'): |
|
torch.randn(size, out=tensor) |
|
result_21 = tensor.clone() |
|
|
|
torch.randn(size, out=tensor) |
|
result_12 = tensor.clone() |
|
|
|
with mpu.get_cuda_rng_tracker().fork('test'): |
|
torch.randn(size, out=tensor) |
|
result_22 = tensor.clone() |
|
|
|
diff = result_11.sub(result_21).abs().max() |
|
diff = min(diff, result_12.sub(result_22).abs().max()) |
|
print(' max diff in generated tensors (should be non-zero) on ' |
|
'global rank {}: {}'.format(torch.distributed.get_rank(), diff)) |
|
assert diff > 1.0e-6 |
|
error = max(result_11.sub(target_11).abs().max(), |
|
result_12.sub(target_12).abs().max()) |
|
error = max(error, result_21.sub(target_21).abs().max()) |
|
error = max(error, result_22.sub(target_22).abs().max()) |
|
print(' max error in generated tensors (should be zero) on ' |
|
'global rank {}: {}'.format(torch.distributed.get_rank(), error)) |
|
assert error < 1.0e-6 |
|
|
|
|
|
mpu.get_cuda_rng_tracker().reset() |
|
|
|
|
|
mpu.destroy_model_parallel() |
|
|
|
torch.distributed.barrier() |
|
if torch.distributed.get_rank() == 0: |
|
print('>> passed the test :-)') |
|
|
|
|
|
def test_model_parallel_cuda_manual_seed(tensor_model_parallel_size): |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print('> testing model parallel cuda manual seed with size {} ...'. |
|
format(tensor_model_parallel_size)) |
|
|
|
mpu.initialize_model_parallel(tensor_model_parallel_size) |
|
tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() |
|
|
|
mpu.model_parallel_cuda_manual_seed(12345) |
|
assert torch.cuda.initial_seed() == 12345 |
|
with mpu.get_cuda_rng_tracker().fork(): |
|
assert torch.cuda.initial_seed() == (12345 + 2718 + |
|
mpu.get_tensor_model_parallel_rank()) |
|
|
|
|
|
mpu.get_cuda_rng_tracker().reset() |
|
|
|
|
|
mpu.destroy_model_parallel() |
|
|
|
torch.distributed.barrier() |
|
if torch.distributed.get_rank() == 0: |
|
print('>> passed the test :-)') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
initialize_distributed() |
|
world_size = torch.distributed.get_world_size() |
|
|
|
tensor_model_parallel_size = 1 |
|
while tensor_model_parallel_size <= world_size: |
|
print_separator('test set rng state') |
|
test_set_cuda_rng_state(tensor_model_parallel_size) |
|
tensor_model_parallel_size *= 2 |
|
|
|
tensor_model_parallel_size = 1 |
|
while tensor_model_parallel_size <= world_size: |
|
print_separator('test cuda rng tracker') |
|
test_cuda_rng_tracker(tensor_model_parallel_size) |
|
tensor_model_parallel_size *= 2 |
|
|
|
tensor_model_parallel_size = 1 |
|
while tensor_model_parallel_size <= world_size: |
|
print_separator('test model parallel cuda manual seed') |
|
test_model_parallel_cuda_manual_seed(tensor_model_parallel_size) |
|
tensor_model_parallel_size *= 2 |
|
|