|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for OpenAI GPT.""" |
|
|
|
from __future__ import (absolute_import, division, print_function, |
|
unicode_literals) |
|
|
|
import sys |
|
import json |
|
import logging |
|
import os |
|
import regex as re |
|
from io import open |
|
|
|
try: |
|
from functools import lru_cache |
|
except ImportError: |
|
|
|
|
|
|
|
def lru_cache(): |
|
return lambda func: func |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PRETRAINED_VOCAB_ARCHIVE_MAP = { |
|
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", |
|
} |
|
PRETRAINED_MERGES_ARCHIVE_MAP = { |
|
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", |
|
} |
|
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { |
|
'gpt2': 1024, |
|
} |
|
VOCAB_NAME = 'vocab.json' |
|
MERGES_NAME = 'merges.txt' |
|
SPECIAL_TOKENS_NAME = 'special_tokens.txt' |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
_chr = unichr if sys.version_info[0] == 2 else chr |
|
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + \ |
|
list(range(ord("®"), ord("ÿ") + 1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [_chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
|
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
class GPT2Tokenizer(object): |
|
""" |
|
GPT-2 BPE tokenizer. Peculiarities: |
|
- Byte-level BPE |
|
""" |
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): |
|
""" |
|
Instantiate a PreTrainedBertModel from a pre-trained model file. |
|
Download and cache the pre-trained model file if needed. |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
special_tokens_file = None |
|
else: |
|
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME) |
|
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME) |
|
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME) |
|
if not os.path.exists(special_tokens_file): |
|
special_tokens_file = None |
|
else: |
|
logger.info("loading special tokens file {}".format(special_tokens_file)) |
|
|
|
try: |
|
from .file_utils import cached_path |
|
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) |
|
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find files {} and {} " |
|
"at this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), |
|
pretrained_model_name_or_path, |
|
vocab_file, merges_file)) |
|
return None |
|
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file: |
|
logger.info("loading vocabulary file {}".format(vocab_file)) |
|
logger.info("loading merges file {}".format(merges_file)) |
|
else: |
|
logger.info("loading vocabulary file {} from cache at {}".format( |
|
vocab_file, resolved_vocab_file)) |
|
logger.info("loading merges file {} from cache at {}".format( |
|
merges_file, resolved_merges_file)) |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: |
|
|
|
|
|
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] |
|
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) |
|
|
|
if special_tokens_file and 'special_tokens' not in kwargs: |
|
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1] |
|
else: |
|
special_tokens = kwargs.pop('special_tokens', []) |
|
tokenizer = cls( |
|
resolved_vocab_file, |
|
resolved_merges_file, |
|
special_tokens=special_tokens, |
|
*inputs, |
|
**kwargs) |
|
return tokenizer |
|
|
|
def __init__(self, vocab_file, merges_file, errors='replace', |
|
special_tokens=None, max_len=None): |
|
self.max_len = max_len if max_len is not None else int(1e12) |
|
self.encoder = json.load(open(vocab_file)) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.errors = errors |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1] |
|
bpe_merges = [tuple(merge.split()) for merge in bpe_data] |
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) |
|
self.cache = {} |
|
|
|
|
|
|
|
self.pat = re.compile( |
|
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") |
|
|
|
self.special_tokens = {} |
|
self.special_tokens_decoder = {} |
|
self.set_special_tokens(special_tokens) |
|
|
|
def __len__(self): |
|
return len(self.encoder) + len(self.special_tokens) |
|
|
|
def set_special_tokens(self, special_tokens): |
|
""" Add a list of additional tokens to the encoder. |
|
The additional tokens are indexed starting from the last index of the |
|
current vocabulary in the order of the `special_tokens` list. |
|
""" |
|
if not special_tokens: |
|
self.special_tokens = {} |
|
self.special_tokens_decoder = {} |
|
return |
|
self.special_tokens = dict((tok, len(self.encoder) + i) |
|
for i, tok in enumerate(special_tokens)) |
|
self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()} |
|
logger.info("Special tokens {}".format(self.special_tokens)) |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except BaseException: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = ' '.join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def tokenize(self, text): |
|
""" Tokenize a string. """ |
|
bpe_tokens = [] |
|
for token in re.findall(self.pat, text): |
|
if sys.version_info[0] == 2: |
|
token = ''.join(self.byte_encoder[ord(b)] for b in token) |
|
else: |
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) |
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' ')) |
|
return bpe_tokens |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
""" Converts a sequence of tokens into ids using the vocab. """ |
|
ids = [] |
|
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)): |
|
if tokens in self.special_tokens: |
|
return self.special_tokens[tokens] |
|
else: |
|
return self.encoder.get(tokens, 0) |
|
for token in tokens: |
|
if token in self.special_tokens: |
|
ids.append(self.special_tokens[token]) |
|
else: |
|
ids.append(self.encoder.get(token, 0)) |
|
if len(ids) > self.max_len: |
|
logger.warning( |
|
"Token indices sequence length is longer than the specified maximum " |
|
" sequence length for this OpenAI GPT model ({} > {}). Running this" |
|
" sequence through the model will result in indexing errors".format( |
|
len(ids), self.max_len) |
|
) |
|
return ids |
|
|
|
def convert_ids_to_tokens(self, ids, skip_special_tokens=False): |
|
"""Converts a sequence of ids in BPE tokens using the vocab.""" |
|
tokens = [] |
|
for i in ids: |
|
if i in self.special_tokens_decoder: |
|
if not skip_special_tokens: |
|
tokens.append(self.special_tokens_decoder[i]) |
|
else: |
|
tokens.append(self.decoder[i]) |
|
return tokens |
|
|
|
def encode(self, text): |
|
return self.convert_tokens_to_ids(self.tokenize(text)) |
|
|
|
def decode(self, tokens): |
|
text = ''.join([self.decoder[token] for token in tokens]) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) |
|
return text |
|
|
|
def save_vocabulary(self, vocab_path): |
|
"""Save the tokenizer vocabulary and merge files to a directory.""" |
|
if not os.path.isdir(vocab_path): |
|
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path)) |
|
return |
|
vocab_file = os.path.join(vocab_path, VOCAB_NAME) |
|
merge_file = os.path.join(vocab_path, MERGES_NAME) |
|
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME) |
|
|
|
with open(vocab_file, 'w', encoding='utf-8') as f: |
|
f.write(json.dumps(self.encoder, ensure_ascii=False)) |
|
|
|
index = 0 |
|
with open(merge_file, "w", encoding="utf-8") as writer: |
|
writer.write(u'#version: 0.2\n') |
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive." |
|
" Please check that the tokenizer is not corrupted!".format(merge_file)) |
|
index = token_index |
|
writer.write(' '.join(bpe_tokens) + u'\n') |
|
index += 1 |
|
|
|
index = len(self.encoder) |
|
with open(special_tokens_file, 'w', encoding='utf-8') as writer: |
|
for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive." |
|
" Please check that the tokenizer is not corrupted!".format(special_tokens_file)) |
|
index = token_index |
|
writer.write(token + u'\n') |
|
index += 1 |
|
|
|
return vocab_file, merge_file, special_tokens_file |
|
|