|
|
|
|
|
"""Pretrain T5""" |
|
|
|
from functools import partial |
|
|
|
import torch |
|
|
|
from megatron import ( |
|
get_args, |
|
get_timers, |
|
print_rank_0 |
|
) |
|
from megatron.core import tensor_parallel |
|
from megatron.data.dataset_utils import build_train_valid_test_datasets |
|
from megatron.model import ModelType |
|
import megatron.model |
|
from megatron.training import pretrain |
|
from megatron.utils import average_losses_across_data_parallel_group |
|
|
|
|
|
""" |
|
Pipeline parallelism for T5 |
|
=========================== |
|
|
|
T5 is a model architecture with both encoder and decoder blocks. |
|
Consequently, pipeline parallelism is implemented slightly differently |
|
compared to architectures like GPT and BERT. |
|
|
|
In particular, when pipeline_model_parallel_world_size > 1, each stage |
|
either executes an encoder block or a decoder block. The |
|
--pipeline_model_parallel_split_rank argument controls the rank at which |
|
the split happens: all ranks lower than this argument execute the |
|
encoder block, and all ranks equal to or higher than this argument value |
|
execute the decoder block. |
|
|
|
In the encoder section of the model, only one tensor is sent downstream: |
|
the intermediate encoder_hidden_state. In the decoder section of the |
|
model, two tensors are sent downstream in the forward pass: the fully |
|
computed encoder_hidden_state, and the intermediate decoder_hidden_state. |
|
|
|
In particular, these are the shapes of the tensors sent between |
|
different workers: |
|
If rank is in decoder section: |
|
intermediate decoder_hidden_state (pre-transpose), |
|
complete encoder_hidden_state (post-transpose). |
|
If rank is at boundary between encoder and decoder sections: |
|
complete encoder_hidden_state (post-transpose). |
|
If rank is in encoder section: |
|
intermediate encoder_hidden_state (pre-transpose). |
|
|
|
Additionally, we have code in the backward_step function in schedules.py |
|
to accumulate the encoder_hidden_state gradient across skip connections |
|
(encoder_hidden_state fed in as input to each layer in the decoder). |
|
""" |
|
|
|
|
|
def model_provider(pre_process=True, |
|
post_process=True, |
|
add_encoder=True, |
|
add_decoder=True): |
|
"""Build the model.""" |
|
print_rank_0('building T5 model ...') |
|
|
|
model_type_t5 = ModelType.encoder_and_decoder |
|
model = megatron.model.T5Model(num_tokentypes=0, |
|
parallel_output=True, |
|
pre_process=pre_process, |
|
post_process=post_process, |
|
add_encoder=add_encoder, |
|
add_decoder=add_decoder, |
|
model_type=model_type_t5) |
|
return model |
|
|
|
|
|
def get_batch(data_iterator): |
|
"""Build the batch.""" |
|
|
|
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask', |
|
'enc_mask', 'dec_mask', 'enc_dec_mask'] |
|
datatype = torch.int64 |
|
|
|
|
|
if data_iterator is not None: |
|
data = next(data_iterator) |
|
else: |
|
data = None |
|
data_b = tensor_parallel.broadcast_data(keys, data, datatype) |
|
|
|
|
|
tokens_enc = data_b['text_enc'].long() |
|
tokens_dec = data_b['text_dec'].long() |
|
labels = data_b['labels'].long() |
|
loss_mask = data_b['loss_mask'].float() |
|
|
|
enc_mask = (data_b['enc_mask'] < 0.5) |
|
dec_mask = (data_b['dec_mask'] < 0.5) |
|
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5) |
|
|
|
return tokens_enc, tokens_dec, loss_mask, labels, \ |
|
enc_mask, dec_mask, enc_dec_mask |
|
|
|
|
|
def loss_func(loss_mask, output_tensor): |
|
lm_loss_ = output_tensor.float() |
|
lm_loss = torch.sum( |
|
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() |
|
|
|
loss = lm_loss |
|
averaged_losses = average_losses_across_data_parallel_group([lm_loss]) |
|
|
|
return loss, {'lm loss': averaged_losses[0]} |
|
|
|
|
|
def forward_step(data_iterator, model): |
|
"""Forward step.""" |
|
args = get_args() |
|
timers = get_timers() |
|
|
|
|
|
timers('batch generator', log_level=2).start() |
|
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \ |
|
= get_batch(data_iterator) |
|
timers('batch generator').stop() |
|
|
|
|
|
output_tensor = model(tokens_enc, |
|
tokens_dec, |
|
enc_mask, |
|
dec_mask, |
|
enc_dec_mask, |
|
tokentype_ids=None, |
|
lm_labels=lm_labels) |
|
|
|
return output_tensor, partial(loss_func, loss_mask) |
|
|
|
|
|
def train_valid_test_datasets_provider(train_val_test_num_samples): |
|
"""Build train, valid, and test datasets.""" |
|
args = get_args() |
|
|
|
print_rank_0('> building train, validation, and test datasets ' |
|
'for T5 ...') |
|
train_ds, valid_ds, test_ds = build_train_valid_test_datasets( |
|
data_prefix=args.data_path, |
|
data_impl=args.data_impl, |
|
splits_string=args.split, |
|
train_valid_test_num_samples=train_val_test_num_samples, |
|
max_seq_length=args.encoder_seq_length, |
|
max_seq_length_dec=args.decoder_seq_length, |
|
masked_lm_prob=args.mask_prob, |
|
short_seq_prob=args.short_seq_prob, |
|
seed=args.seed, |
|
skip_warmup=(not args.mmap_warmup), |
|
dataset_type='t5') |
|
print_rank_0("> finished creating T5 datasets ...") |
|
return train_ds, valid_ds, test_ds |
|
|
|
|
|
if __name__ == "__main__": |
|
model_type_t5 = ModelType.encoder_and_decoder |
|
args_defaults = {'tokenizer_type': 'BertWordPieceLowerCase'} |
|
megatron.initialize.initialize_megatron(extra_args_provider=None, |
|
args_defaults=args_defaults) |
|
args = megatron.get_args() |
|
|
|
pretrain(args, |
|
train_valid_test_datasets_provider, |
|
model_provider, |
|
model_type_t5, |
|
forward_step) |
|
|