|
|
|
|
|
""" Tasks data utility.""" |
|
|
|
import re |
|
import numpy as np |
|
|
|
|
|
def clean_text(text): |
|
"""Remove new lines and multiple spaces and adjust end of sentence dot.""" |
|
|
|
text = text.replace("\n", " ") |
|
text = re.sub(r'\s+', ' ', text) |
|
for _ in range(3): |
|
text = text.replace(' . ', '. ') |
|
|
|
return text |
|
|
|
|
|
def build_sample(ids, types, paddings, label, unique_id): |
|
"""Convert to numpy and return a sample consumed by the batch producer.""" |
|
|
|
ids_np = np.array(ids, dtype=np.int64) |
|
types_np = np.array(types, dtype=np.int64) |
|
paddings_np = np.array(paddings, dtype=np.int64) |
|
sample = ({'text': ids_np, |
|
'types': types_np, |
|
'padding_mask': paddings_np, |
|
'label': int(label), |
|
'uid': int(unique_id)}) |
|
|
|
return sample |
|
|
|
|
|
def build_tokens_types_paddings_from_text(text_a, text_b, |
|
tokenizer, max_seq_length): |
|
"""Build token types and paddings, trim if needed, and pad if needed.""" |
|
|
|
text_a_ids = tokenizer.tokenize(text_a) |
|
text_b_ids = None |
|
if text_b is not None: |
|
text_b_ids = tokenizer.tokenize(text_b) |
|
|
|
return build_tokens_types_paddings_from_ids(text_a_ids, text_b_ids, |
|
max_seq_length, tokenizer.cls, |
|
tokenizer.sep, tokenizer.pad) |
|
|
|
|
|
def build_tokens_types_paddings_from_ids(text_a_ids, text_b_ids, max_seq_length, |
|
cls_id, sep_id, pad_id): |
|
"""Build token types and paddings, trim if needed, and pad if needed.""" |
|
|
|
ids = [] |
|
types = [] |
|
paddings = [] |
|
|
|
|
|
ids.append(cls_id) |
|
types.append(0) |
|
paddings.append(1) |
|
|
|
|
|
len_text_a = len(text_a_ids) |
|
ids.extend(text_a_ids) |
|
types.extend([0] * len_text_a) |
|
paddings.extend([1] * len_text_a) |
|
|
|
|
|
ids.append(sep_id) |
|
types.append(0) |
|
paddings.append(1) |
|
|
|
|
|
if text_b_ids is not None: |
|
len_text_b = len(text_b_ids) |
|
ids.extend(text_b_ids) |
|
types.extend([1] * len_text_b) |
|
paddings.extend([1] * len_text_b) |
|
|
|
|
|
trimmed = False |
|
if len(ids) >= max_seq_length: |
|
max_seq_length_m1 = max_seq_length - 1 |
|
ids = ids[0:max_seq_length_m1] |
|
types = types[0:max_seq_length_m1] |
|
paddings = paddings[0:max_seq_length_m1] |
|
trimmed = True |
|
|
|
|
|
if (text_b_ids is not None) or trimmed: |
|
ids.append(sep_id) |
|
if text_b_ids is None: |
|
types.append(0) |
|
else: |
|
types.append(1) |
|
paddings.append(1) |
|
|
|
|
|
padding_length = max_seq_length - len(ids) |
|
if padding_length > 0: |
|
ids.extend([pad_id] * padding_length) |
|
types.extend([pad_id] * padding_length) |
|
paddings.extend([0] * padding_length) |
|
|
|
return ids, types, paddings |
|
|