|
|
|
|
|
"""ORQA dataset.""" |
|
|
|
import json |
|
import random |
|
from abc import ABC |
|
from abc import abstractmethod |
|
|
|
import numpy as np |
|
from torch.utils.data import Dataset |
|
|
|
from megatron import print_rank_0, get_args |
|
from megatron.data.biencoder_dataset_utils import make_attention_mask |
|
|
|
def build_token_types_from_context_list(ctx_list, tokenizer, max_seq_length): |
|
ctx_id_list, ctx_types_list = [], [] |
|
for context in ctx_list: |
|
title_ids = tokenizer.tokenize(context['title']) |
|
ctx_ids = tokenizer.tokenize(context['text']) |
|
ctx_ids = title_ids + [tokenizer.sep_id] + ctx_ids |
|
|
|
ctx_ids, ctx_types, _ = build_tokens_types_paddings_from_ids(ctx_ids, |
|
max_seq_length, tokenizer.cls, |
|
tokenizer.sep, tokenizer.pad) |
|
ctx_id_list.append(ctx_ids) |
|
ctx_types_list.append(ctx_types) |
|
|
|
return ctx_id_list, ctx_types_list |
|
|
|
|
|
def build_tokens_types_paddings_from_text(query, context, |
|
tokenizer, max_seq_length): |
|
"""Build token types and paddings, trim if needed, and pad if needed.""" |
|
|
|
query_ids = tokenizer.tokenize(query) |
|
query_ids, query_types, query_pad_mask = \ |
|
build_tokens_types_paddings_from_ids(query_ids, max_seq_length, \ |
|
tokenizer.cls, tokenizer.sep, tokenizer.pad) |
|
|
|
|
|
extended_ctx_ids = None |
|
if context is not None: |
|
title_ids = tokenizer.tokenize(context['title']) |
|
ctx_ids = tokenizer.tokenize(context['text']) |
|
extended_ctx_ids = title_ids + [tokenizer.sep] + ctx_ids |
|
|
|
ctx_ids, ctx_types, ctx_pad_mask = \ |
|
build_tokens_types_paddings_from_ids(extended_ctx_ids, |
|
max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad) |
|
|
|
return query_ids, query_types, query_pad_mask, \ |
|
ctx_ids, ctx_types, ctx_pad_mask |
|
|
|
|
|
|
|
def build_tokens_types_paddings_from_ids(text_ids, max_seq_length, |
|
cls_id, sep_id, pad_id): |
|
"""Build token types and paddings, trim if needed, and pad if needed.""" |
|
enc_ids = [] |
|
tokentypes_enc = [] |
|
|
|
|
|
enc_ids.append(cls_id) |
|
tokentypes_enc.append(0) |
|
|
|
|
|
len_src = len(text_ids) |
|
enc_ids.extend(text_ids) |
|
tokentypes_enc.extend([0] * len_src) |
|
|
|
|
|
if len(enc_ids) > max_seq_length - 1: |
|
enc_ids = enc_ids[0: max_seq_length - 1] |
|
tokentypes_enc = tokentypes_enc[0: max_seq_length - 1] |
|
|
|
|
|
enc_ids.append(sep_id) |
|
tokentypes_enc.append(0) |
|
|
|
num_tokens_enc = len(enc_ids) |
|
|
|
padding_length = max_seq_length - len(enc_ids) |
|
if padding_length > 0: |
|
enc_ids.extend([pad_id] * padding_length) |
|
tokentypes_enc.extend([pad_id] * padding_length) |
|
|
|
pad_mask = ([1] * num_tokens_enc) + ([0] * padding_length) |
|
pad_mask = np.array(pad_mask, dtype=np.int64) |
|
|
|
return enc_ids, tokentypes_enc, pad_mask |
|
|
|
|
|
def build_sample(query_ids, query_types, query_pad_mask, |
|
ctx_ids, ctx_types, ctx_pad_mask, answers, |
|
neg_ctx_id_list=None, neg_ctx_types_list=None, |
|
include_neg=False): |
|
"""Convert to numpy and return a sample consumed by the batch producer.""" |
|
|
|
query_ids = np.array(query_ids, dtype=np.int64) |
|
query_types = np.array(query_types, dtype=np.int64) |
|
query_mask = make_attention_mask(query_ids, query_ids) |
|
|
|
ctx_ids = np.array(ctx_ids, dtype=np.int64) |
|
ctx_types = np.array(ctx_types, dtype=np.int64) |
|
ctx_mask = make_attention_mask(ctx_ids, ctx_ids) |
|
|
|
sample = ({ |
|
'query': query_ids, |
|
'query_mask': query_mask, |
|
'query_types': query_types, |
|
'query_pad_mask': query_pad_mask, |
|
'context': ctx_ids, |
|
'context_mask': ctx_mask, |
|
'context_types': ctx_types, |
|
'context_pad_mask': ctx_pad_mask, |
|
'reference': answers |
|
}) |
|
|
|
if include_neg: |
|
neg_ctx_ids = np.array(neg_ctx_id_list, dtype=np.int64) |
|
neg_ctx_id_types = np.array(neg_ctx_types_list, dtype=np.int64) |
|
neg_ctx_mask = np.array([make_attention_mask(ids, ids) \ |
|
for ids in neg_ctx_ids], dtype=np.int64) |
|
|
|
sample['neg_context'] = neg_ctx_ids |
|
sample['neg_context_types'] = neg_ctx_id_types |
|
sample['neg_context_mask'] = neg_ctx_mask |
|
|
|
return sample |
|
|
|
|
|
class OpenRetrievalAbstractDataset(ABC, Dataset): |
|
"""Open Retrieval base dataset class.""" |
|
|
|
def __init__(self, task_name, dataset_name, datapaths, tokenizer, \ |
|
max_seq_length, evaluate=False): |
|
|
|
args = get_args() |
|
self.evaluate = evaluate |
|
self.val_av_rank_hard_neg = args.val_av_rank_hard_neg |
|
self.val_av_rank_other_neg = args.val_av_rank_other_neg |
|
self.train_with_neg = args.train_with_neg |
|
self.train_hard_neg = args.train_hard_neg |
|
|
|
self.task_name = task_name |
|
self.dataset_name = dataset_name |
|
self.tokenizer = tokenizer |
|
self.max_seq_length = max_seq_length |
|
print_rank_0(' > building {} dataset for {}:'.format(self.task_name, |
|
self.dataset_name)) |
|
|
|
string = ' > paths:' |
|
for path in datapaths: |
|
string += ' ' + path |
|
print_rank_0(string) |
|
self.samples = [] |
|
for datapath in datapaths: |
|
self.samples.extend(self.process_samples_from_single_path(datapath)) |
|
|
|
args = get_args() |
|
if args.sample_rate < 1: |
|
k = int(len(self.samples) * args.sample_rate) |
|
self.samples = random.sample(self.samples, k) |
|
|
|
print_rank_0(' >> total number of samples: {}'.format( |
|
len(self.samples))) |
|
|
|
def __len__(self): |
|
return len(self.samples) |
|
|
|
def __getitem__(self, idx): |
|
raw_sample = self.samples[idx] |
|
|
|
query_ids, query_types, query_pad_mask, ctx_ids, ctx_types, \ |
|
ctx_pad_mask = build_tokens_types_paddings_from_text( \ |
|
raw_sample['question'], raw_sample['pos_context'], \ |
|
self.tokenizer, self.max_seq_length) |
|
|
|
if self.evaluate: |
|
neg_ctx_list = \ |
|
raw_sample['negative_context'][:self.val_av_rank_other_neg] + \ |
|
raw_sample['hard_negative_context'][:self.val_av_rank_hard_neg] |
|
neg_ctx_id_list, neg_ctx_types_list = \ |
|
build_token_types_from_context_list(neg_ctx_list, \ |
|
self.tokenizer, self.max_seq_length) |
|
|
|
elif self.train_with_neg: |
|
hard_negative_ctx = raw_sample['hard_negative_context'] |
|
negative_ctx = raw_sample['negative_context'] |
|
if True: |
|
random.shuffle(hard_negative_ctx) |
|
random.shuffle(negative_ctx) |
|
|
|
neg_ctx_list = hard_negative_ctx[:self.train_hard_neg] |
|
|
|
|
|
|
|
if len(neg_ctx_list) < self.train_hard_neg: |
|
neg_ctx_list += negative_ctx[:self.train_hard_neg - \ |
|
len(neg_ctx_list)] |
|
|
|
neg_ctx_id_list, neg_ctx_types_list = \ |
|
build_token_types_from_context_list(neg_ctx_list, |
|
self.tokenizer, self.max_seq_length) |
|
else: |
|
neg_ctx_id_list = None |
|
neg_ctx_types_list = None |
|
|
|
sample = build_sample(query_ids, query_types, query_pad_mask, |
|
ctx_ids, ctx_types, ctx_pad_mask, |
|
raw_sample['answers'], |
|
neg_ctx_id_list, neg_ctx_types_list, |
|
include_neg=self.evaluate or self.train_with_neg) |
|
|
|
return sample |
|
|
|
@staticmethod |
|
@abstractmethod |
|
def process_samples_from_single_path(filename): |
|
"""Abstract method that takes a filename and |
|
returns a list of dataset samples, each sample being a dict of |
|
{'text': string, 'text': string} |
|
""" |
|
pass |
|
|
|
|
|
|
|
def normalize_question(question): |
|
if question[-1] == '?': |
|
question = question[:-1] |
|
return question |
|
|
|
|
|
|
|
|
|
class NQSupervisedDataset(OpenRetrievalAbstractDataset): |
|
|
|
def __init__(self, name, datapaths, tokenizer, max_seq_length, \ |
|
evaluate=False): |
|
super().__init__('natural_questions_ret', |
|
name, |
|
datapaths, |
|
tokenizer, |
|
max_seq_length, |
|
evaluate=evaluate) |
|
|
|
@staticmethod |
|
def process_samples_from_single_path(filename): |
|
""""Implement abstract method.""" |
|
print_rank_0(' > Processing {} ...'.format(filename)) |
|
samples = [] |
|
total = 0 |
|
|
|
with open(filename, 'r', encoding="utf-8") as f: |
|
data = json.load(f) |
|
for row in data: |
|
question = normalize_question(row['question']) |
|
pos_context = row['positive_ctxs'][0] |
|
|
|
|
|
if len(row['hard_negative_ctxs']) > 0: |
|
hard_neg_context = row['hard_negative_ctxs'] |
|
else: |
|
hard_neg_context = [] |
|
|
|
|
|
if len(row['negative_ctxs']) > 0: |
|
neg_context = row['negative_ctxs'] |
|
else: |
|
neg_context = [] |
|
|
|
answers = row['answers'] |
|
sample = {'question': question, |
|
'pos_context': pos_context, |
|
'hard_negative_context': hard_neg_context, |
|
'negative_context': neg_context, |
|
'answers': answers} |
|
total += 1 |
|
samples.append(sample) |
|
|
|
if total % 5000 == 0: |
|
print_rank_0(' > processed {} so far ...'.format(total)) |
|
|
|
print_rank_0(' >> processed {} samples.'.format(len(samples))) |
|
return samples |
|
|
|
|