|
|
|
|
|
"""Zero-shot datasets."""
|
|
|
|
import json
|
|
import math
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from megatron import get_args
|
|
from megatron import print_rank_0
|
|
from megatron import get_tokenizer
|
|
from .detokenizer import get_detokenizer
|
|
|
|
|
|
def build_dataset(task):
|
|
"""Helper function to select and build dataset."""
|
|
|
|
if task == 'LAMBADA':
|
|
return _build_lambada_dataset()
|
|
if task == 'WIKITEXT103':
|
|
return _build_wikitext103_dataset()
|
|
raise NotImplementedError('dataset for {} task is not '
|
|
'implemented.'.format(task))
|
|
|
|
|
|
class _LMDataset(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, tokens, seq_len, pad_idx, num_original_tokens,
|
|
num_tokenized_tokens, overalapping_eval=None):
|
|
self.tokens = tokens
|
|
self.seq_len = seq_len
|
|
self.pad_idx = pad_idx
|
|
self.overalapping_eval = overalapping_eval
|
|
if self.overalapping_eval is None:
|
|
self.overalapping_eval = self.seq_len
|
|
self.overalapping_eval = max(1, self.overalapping_eval)
|
|
self.num_original_tokens = num_original_tokens
|
|
self.num_tokenized_tokens = num_tokenized_tokens
|
|
self.total_targets = len(self.tokens) - 1
|
|
|
|
targets = max(self.total_targets - self.overalapping_eval, 0)
|
|
self.total_sequences = max(
|
|
math.ceil(targets / self.overalapping_eval) + 1, 1)
|
|
|
|
def __len__(self):
|
|
return self.total_sequences
|
|
|
|
def __getitem__(self, idx):
|
|
start_idx = idx * self.overalapping_eval
|
|
end_idx = start_idx + self.seq_len
|
|
tokens = self.tokens[start_idx:end_idx + 1]
|
|
num_tokens = len(tokens)
|
|
pad_mask = [1] * num_tokens
|
|
if num_tokens < self.seq_len + 1:
|
|
num_pad = (self.seq_len + 1 - num_tokens)
|
|
pad_mask += [0] * (num_pad)
|
|
tokens += [self.pad_idx] * num_pad
|
|
pad_mask = np.array(pad_mask[1:])
|
|
if self.overalapping_eval != self.seq_len and idx != 0:
|
|
pad_mask[:-self.overalapping_eval] *= 0
|
|
|
|
return {'text': np.array(tokens), 'pad_mask': pad_mask}
|
|
|
|
|
|
class _LambadaDataset(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, path, pad_idx, tokenizer, seq_len, strict=False):
|
|
print_rank_0('> building lambada dataset from {} ...'.format(path))
|
|
self.seq_len = seq_len
|
|
self.pad_idx = pad_idx
|
|
self.tokenizer = tokenizer
|
|
self.strict = strict
|
|
|
|
self.tokens = []
|
|
self.labels = []
|
|
with open(path, 'r') as f:
|
|
for line in f.readlines():
|
|
text = json.loads(line)['text']
|
|
tokens, labels = self.get_tokens(text)
|
|
self.tokens.append(tokens)
|
|
self.labels.append(labels)
|
|
|
|
def get_tokens(self, text):
|
|
if not self.strict:
|
|
tokens = self.tokenizer.tokenize(text)
|
|
return tokens[:-1], [tokens[-1]]
|
|
last_token = text.split()[-1]
|
|
start_idx = text.rfind(last_token)
|
|
beginning_tokens = self.tokenizer.tokenize(text[:start_idx].strip())
|
|
last_token = self.tokenizer.tokenize(' ' + last_token)
|
|
return beginning_tokens, last_token
|
|
|
|
def __len__(self):
|
|
return len(self.tokens)
|
|
|
|
def __getitem__(self, idx):
|
|
tokens = self.tokens[idx]
|
|
num_tokens = len(tokens)
|
|
pad_mask = [0] * num_tokens
|
|
labels = self.labels[idx]
|
|
pad_mask += [1] * len(labels)
|
|
tokens = tokens + labels
|
|
num_tokens = len(tokens)
|
|
if num_tokens < self.seq_len + 1:
|
|
num_pad = (self.seq_len + 1 - num_tokens)
|
|
pad_mask += [0] * (num_pad)
|
|
tokens += [self.pad_idx] * num_pad
|
|
pad_mask = np.array(pad_mask[1:])
|
|
|
|
return {'text': np.array(tokens), 'pad_mask': pad_mask}
|
|
|
|
|
|
def _build_lambada_dataset():
|
|
"""Build lambada dataset."""
|
|
args = get_args()
|
|
tokenizer = get_tokenizer()
|
|
|
|
assert len(args.valid_data) == 1
|
|
val_dataset = _LambadaDataset(args.valid_data[0], tokenizer.eod, tokenizer,
|
|
args.seq_length, args.strict_lambada)
|
|
print_rank_0(' > found {} samples.'.format(len(val_dataset)))
|
|
|
|
return val_dataset
|
|
|
|
|
|
def _build_wikitext103_dataset():
|
|
""""""
|
|
args = get_args()
|
|
tokenizer = get_tokenizer()
|
|
|
|
assert len(args.valid_data) == 1
|
|
with open(args.valid_data[0], "rb") as reader:
|
|
entire_data = reader.read().decode('utf-8')
|
|
num_original_tokens = len(entire_data.strip().split(" "))
|
|
entire_data = get_detokenizer(args.valid_data[0])(entire_data)
|
|
tokenized_data = tokenizer.tokenize(entire_data)
|
|
num_tokenized_tokens = len(tokenized_data)
|
|
|
|
val_dataset = _LMDataset(tokenized_data, args.seq_length, tokenizer.eod,
|
|
num_original_tokens, num_tokenized_tokens,
|
|
args.overlapping_eval)
|
|
print_rank_0(' > number of original tokens: {}, number of detokenized '
|
|
'tokens: {}'.format(num_original_tokens, num_tokenized_tokens))
|
|
|
|
return val_dataset
|
|
|