|
import argparse |
|
import os |
|
|
|
import torch |
|
|
|
import megatron |
|
import megatron.initialize |
|
import megatron.model.utils |
|
import megatron.model.language_model |
|
import megatron.arguments |
|
|
|
import megatron.core.tensor_parallel.random |
|
import megatron.model.transformer |
|
|
|
from megatron.model.enums import AttnMaskType, ModelType, LayerType |
|
|
|
|
|
init_method_std = .02 |
|
num_layers = 2 |
|
layer_number = 1 |
|
|
|
init_method = megatron.model.utils.init_method_normal(init_method_std) |
|
output_layer_init_method = megatron.model.utils.scaled_init_method_normal(init_method_std, num_layers) |
|
layer_type = LayerType.encoder |
|
|
|
""" |
|
--use_bias |
|
--micro_batch_size 2 |
|
--num_layers 2 |
|
--hidden_size 4 |
|
--num_attention_heads 4 |
|
--max_position_embeddings 4 |
|
--encoder_seq_length 4 |
|
--global_batch_size 128 |
|
--train_iters 2000000 |
|
--data_impl mmap |
|
--split 80,10,10 |
|
--distributed_backend nccl |
|
--lr_decay_style constant |
|
--lr 0.0001 |
|
""" |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
base_parser = megatron.arguments.build_base_parser() |
|
args = base_parser.parse_args(["--micro_batch_size", "4"]) |
|
args_defaults = {"micro_batch_size": 2, |
|
"num_layers": 2, |
|
"hidden_size": 4, |
|
"num_attention_heads": 4, |
|
"max_position_embeddings": 4, |
|
"encoder_seq_length": 4 |
|
} |
|
|
|
args.rank = int(os.getenv('RANK', '0')) |
|
args.world_size = int(os.getenv("WORLD_SIZE", '1')) |
|
|
|
_MODEL_PARALLEL_RNG_TRACKER_NAME = 'model-parallel-rng' |
|
megatron.core.tensor_parallel.random._CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME, |
|
111) |
|
|
|
|
|
|
|
|
|
megatron.arguments.validate_args(args, args_defaults) |
|
|
|
megatron.fused_kernels.load(args) |
|
|
|
device = torch.device("cuda") |
|
world_size = 1 |
|
|
|
|
|
|
|
|
|
|
|
layer1 = megatron.model.transformer.ParallelTransformerLayer(init_method, |
|
output_layer_init_method, |
|
layer_number, |
|
layer_type, |
|
world_size=world_size, |
|
args=args).to(device) |
|
|
|
attention_mask = torch.tensor([[[[False, True, True, True], |
|
[False, False, True, True], |
|
[False, False, False, True], |
|
[False, False, False, False]]]]).to(device) |
|
hidden_states = torch.tensor([[[0.0000, 0.0334, -0.0528, -0.0357], |
|
[-0.0061, -0.0052, 0.0041, -0.0000]], |
|
[[0.0075, 0.0000, -0.0000, -0.0542], |
|
[0.0196, 0.0000, -0.0114, -0.0205]], |
|
[[0.0077, 0.0188, 0.0371, 0.0155], |
|
[0.0009, 0.0042, 0.0135, 0.0034]], |
|
[[-0.0073, -0.0129, 0.0069, 0.0060], |
|
[-0.0000, -0.0000, 0.0174, 0.0210]]]).to(device) |
|
y1 = layer1(hidden_states, attention_mask) |
|
|
|
|
|
|
|
|
|
|
|
|