|
import json |
|
import os |
|
import warnings |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
|
|
import torch |
|
from fairscale.nn.model_parallel.initialize import initialize_model_parallel |
|
from torch import nn |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
LlamaForCausalLM, |
|
LlamaTokenizer, |
|
MistralForCausalLM, |
|
GemmaTokenizer, |
|
GemmaForCausalLM |
|
) |
|
|
|
from finetune import data_provider, extra_args, get_batch, loss_func, model_provider |
|
from megatron import get_args, update_num_microbatches |
|
from megatron.arguments import parse_args |
|
from megatron.initialize import initialize_megatron, set_jit_fusion_options |
|
from megatron.training import ( |
|
_setup_model_and_optimizer, |
|
build_train_valid_test_data_iterators, |
|
) |
|
|
|
|
|
class Llama2Wrapper(nn.Module): |
|
def __init__(self, cache_dir): |
|
super().__init__() |
|
initialize_model_parallel(1) |
|
cache_dir = Path(cache_dir) |
|
checkpoints = sorted(cache_dir.glob("*.pth")) |
|
assert ( |
|
len(checkpoints) == 1 |
|
), "Currently, only llama2 unsharded models implemented" |
|
with open(cache_dir / "params.json", "r") as f: |
|
params = json.loads(f.read()) |
|
params["vocab_size"] = 32000 |
|
|
|
self.model = llama.Transformer( |
|
llama.ModelArgs(max_seq_len=4096, max_batch_size=1, **params) |
|
) |
|
self.model.load_state_dict(torch.load(checkpoints[0]), strict=False) |
|
|
|
def forward(self, input_ids, position_ids=None, attention_mask=None, labels=None): |
|
if labels is not None: |
|
warnings.warn("Llama2 does not compute loss") |
|
logits = self.model(input_ids, 0) |
|
loss = torch.tensor(0.0).to(logits.device, logits.dtype) |
|
return {"logits": logits, "loss": loss} |
|
|
|
|
|
def is_meta_llama2_path(path: Optional[Path]) -> bool: |
|
return path is not None and len(list(path.glob("*.pth"))) > 0 |
|
|
|
|
|
def hf_provider( |
|
name: str, cache_dir: Optional[Path], device: str, size: int = 7, bf16: bool = False |
|
): |
|
print("Getting huggingface model...") |
|
extra_kwargs = {} |
|
if bf16: |
|
extra_kwargs = {"torch_dtype": torch.bfloat16} |
|
if name == "falcon": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
f"tiiuae/falcon-{size}b", |
|
cache_dir=cache_dir, |
|
trust_remote_code=True, |
|
**extra_kwargs, |
|
) |
|
elif name == "llama": |
|
try: |
|
model = LlamaForCausalLM.from_pretrained(cache_dir, **extra_kwargs) |
|
except OSError: |
|
print( |
|
f"Cache dir {cache_dir} does not look like a huggingface " |
|
"checkpoint, assuming cache_dir instead" |
|
) |
|
model = LlamaForCausalLM.from_pretrained( |
|
f"decapoda-research/llama-{size}b-hf", |
|
cache_dir=cache_dir, |
|
**extra_kwargs, |
|
) |
|
elif name == "llama2" and is_meta_llama2_path(cache_dir): |
|
print( |
|
f"baseline path {cache_dir} does not look like a huggingface, " |
|
"assuming it's raw llama2 weights instead" |
|
) |
|
model = Llama2Wrapper(cache_dir) |
|
elif name == "llama2": |
|
model = LlamaForCausalLM.from_pretrained(cache_dir, **extra_kwargs) |
|
elif name == "mistral": |
|
assert size == 7, "Mistral only supports 7B model" |
|
try: |
|
model = MistralForCausalLM.from_pretrained(cache_dir, **extra_kwargs) |
|
except OSError: |
|
print( |
|
f"Cache dir {cache_dir} does not look like a huggingface " |
|
"checkpoint, assuming cache_dir instead" |
|
) |
|
model = MistralForCausalLM.from_pretrained( |
|
f"mistralai/Mistral-{size}B-v0.1", cache_dir=cache_dir, **extra_kwargs |
|
) |
|
elif name == "gemma": |
|
model = GemmaForCausalLM.from_pretrained(cache_dir, **extra_kwargs) |
|
else: |
|
raise KeyError(f"Model {name} not implemented") |
|
return model.eval().requires_grad_(False).to(device) |
|
|
|
|
|
def hf_our_provider(name: str, data_dir: Path, device: str, size: int = 7): |
|
if name in {"llama", "llama2"}: |
|
model = LlamaForCausalLM.from_pretrained(data_dir) |
|
else: |
|
raise NotImplementedError("Testing custom checkpoints supported for llama") |
|
return model.eval().requires_grad_(False).to(device) |
|
|
|
|
|
def hf_forward(model, batch): |
|
device = next(param.device for param in model.parameters()) |
|
batch = [tensor.to(device) for tensor in batch] |
|
tokens, labels, loss_mask, attention_mask, position_ids = batch |
|
output = model(input_ids=tokens, position_ids=position_ids, labels=tokens) |
|
return output["logits"], output["loss"] |
|
|
|
|
|
def mega_provider(name: str): |
|
print("Getting megatron model...") |
|
model, _, _ = _setup_model_and_optimizer(model_provider, name, args=get_args()) |
|
assert ( |
|
len(model) == 1 |
|
), "correctness verification only supported with unsharded models" |
|
model = model[0].eval().requires_grad_(False) |
|
return model |
|
|
|
|
|
def mega_forward(model, batch): |
|
tokens, labels, loss_mask, attention_mask, position_ids = batch |
|
assert torch.all(loss_mask) |
|
|
|
_, logits = out = model(tokens, position_ids, attention_mask, labels=labels) |
|
loss, _ = loss_func(model.training, batch, out) |
|
return logits, loss |
|
|
|
|
|
def verify_step(our_forward, our_model, base_forward, base_model, batch): |
|
our_logits, our_loss = our_forward(our_model, batch) |
|
base_logits, base_loss = base_forward(base_model, batch) |
|
assert ( |
|
our_logits.size() == base_logits.size() |
|
), f"ours={our_logits.size()}, true={base_logits.size()}" |
|
our_logits = our_logits.cpu() |
|
base_logits = base_logits.cpu() |
|
abs_error = torch.abs(our_logits - base_logits) |
|
print( |
|
"Max absoulute error in the logits:", |
|
f"max={torch.max(abs_error):.6f}, avg={torch.mean(abs_error):.6f}", |
|
) |
|
assert our_loss.size() == base_loss.size() |
|
our_loss = our_loss.cpu() |
|
base_loss = base_loss.cpu() |
|
loss_error = torch.abs(our_loss - base_loss) |
|
print( |
|
f"Abs loss error: {loss_error:.6f} " |
|
f"Our loss: {our_loss:.3f}, theirs: {base_loss:.3f}" |
|
) |
|
|
|
|
|
def is_megatron_path(path): |
|
path = Path(path) if isinstance(path, str) else path |
|
return (path / "latest_checkpointed_iteration.txt").exists() |
|
|
|
|
|
def main(): |
|
|
|
print("Starting megatron vs huggingface verification") |
|
args = get_args() |
|
set_jit_fusion_options(args) |
|
|
|
|
|
print("Loading our model!") |
|
if is_megatron_path(args.load): |
|
our_model = mega_provider(args.model_name) |
|
our_forward = mega_forward |
|
else: |
|
print( |
|
"NOTE: The given path does not look like a megatron checkpoint, " |
|
f"assuming it's a huggingface checkpoint instead (path={args.load})" |
|
) |
|
our_model = hf_our_provider( |
|
args.model_name, args.load, "cuda:0" |
|
) |
|
our_forward = hf_forward |
|
args.iteration = 0 |
|
|
|
|
|
print("Loading baseline model!") |
|
base_model = hf_provider( |
|
args.model_name, args.cache_dir, args.baseline_device, size=args.model_size |
|
) |
|
base_forward = hf_forward |
|
|
|
|
|
print("Loading dataset!") |
|
data_iterator, _, _ = build_train_valid_test_data_iterators(data_provider, args) |
|
|
|
|
|
for iteration in range(0, 10): |
|
print(f"Iteration {iteration}...") |
|
update_num_microbatches(args.consumed_train_samples) |
|
args.curr_iteration = iteration |
|
verify_step( |
|
our_forward, our_model, base_forward, base_model, get_batch(data_iterator) |
|
) |
|
|
|
|
|
def extra_extra_args(parser): |
|
parser = extra_args(parser) |
|
group = parser.add_argument_group(title="huggingface") |
|
group.add_argument( |
|
"--huggingface_cache", |
|
type=Path, |
|
default=None, |
|
dest="cache_dir", |
|
help=( |
|
"If falcon, optional: path to huggingface cache. " |
|
"If llama2, optional: either the huggingface cache path, or " |
|
"the raw weight directory given by meta. " |
|
"If llama, optional: either the path to converted huggingface weights " |
|
"(use convert_llama_weights_to_hf.py) or the huggingface cache dir." |
|
), |
|
) |
|
group.add_argument( |
|
"--huggingface_device", |
|
default="cuda:1", |
|
dest="baseline_device", |
|
help="Device to use for the baseline model", |
|
) |
|
group.add_argument("--model_size", type=int, default=7) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
defaults = { |
|
"micro_batch_size": 1, |
|
"use_checkpoint_args": True, |
|
"train_iters": 10, |
|
"lr": 1.0, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
initialize_megatron(extra_extra_args, args_defaults=defaults) |
|
main() |
|
|