|
task DumpHFDataset |
|
> dataset_json=dataset.json |
|
:: repo=@ |
|
:: dataset_path=@ |
|
:: n_tokens=@ |
|
:: threshold=@ |
|
:: min_perplexity=@ |
|
:: is_hf_dataset=@ |
|
:: wikipedia=@ |
|
:: posterior_tokens=@ |
|
:: n_posterior_tokens=@ |
|
:: is_parallel=@ |
|
:: lp=@ |
|
{ |
|
python $repo/prepare_data.py \ |
|
--output $dataset_json \ |
|
--n_tokens $n_tokens \ |
|
--dataset_path $dataset_path \ |
|
--threshold $threshold \ |
|
--min_perplexity $min_perplexity \ |
|
--is_hf_dataset $is_hf_dataset \ |
|
--wikipedia $wikipedia \ |
|
--posterior_tokens $posterior_tokens \ |
|
--n_posterior_tokens $n_posterior_tokens \ |
|
--is_parallel $is_parallel \ |
|
--lp $lp |
|
} |
|
|
|
task PreprocessDataset |
|
< dataset_json=$dataset_json@DumpHFDataset |
|
> dataset_bin=data_bin |
|
:: dataset=@ |
|
:: repo=@ |
|
:: tokenizer_path=@ |
|
:: tokenizer_type=@ |
|
:: cpu_workers=@ |
|
{ |
|
set -euo pipefail |
|
mkdir -p $dataset_bin |
|
python $repo/tools/preprocess_data.py \ |
|
--input=$dataset_json \ |
|
--output_prefix=$dataset_bin/data \ |
|
--tokenizer_type=$tokenizer_type \ |
|
--vocab_file=$tokenizer_path \ |
|
--chunk_size=32 \ |
|
--workers=16 \ |
|
--no_new_tokens \ |
|
--append_eod |
|
} |
|
|
|
task Convert2Megatron |
|
> megatron_model |
|
:: repo=@ |
|
:: size=@ |
|
:: model_path=@ |
|
:: model_type=@ |
|
{ |
|
python $repo/weights_conversion/hf_to_megatron.py $model_type \ |
|
--size=$size \ |
|
--out=$megatron_model \ |
|
--cache-dir=$model_path \ |
|
--model-path=$model_path |
|
} |
|
|
|
task ModelSharding |
|
< megatron_model=$megatron_model@Convert2Megatron |
|
> sharded_model |
|
:: repo=@ |
|
:: tp=@ |
|
:: pp=@ |
|
:: vocab_size=@ |
|
:: model_type=@ |
|
:: kv_channels=@ |
|
{ |
|
KV_CHANNELS_ARGS="" |
|
if [ "$kv_channels" != "" ]; then |
|
KV_CHANNELS_ARGS="--kv_channels $kv_channels" |
|
fi |
|
|
|
python $repo/tools/checkpoint_util.py \ |
|
--target_tensor_parallel_size $tp \ |
|
--target_pipeline_parallel_size $pp \ |
|
--load_dir $megatron_model \ |
|
--save_dir $sharded_model \ |
|
--model_type $model_type \ |
|
--true_vocab_size $vocab_size \ |
|
--bf16 \ |
|
$KV_CHANNELS_ARGS |
|
} |
|
|
|
task MakeDataMix |
|
< dataset_bin=@PreprocessDataset |
|
> datamix_file |
|
:: datamix_weights=@ |
|
{ |
|
# simply write datamix weight and path in dataset_bin to a file, separated by a space |
|
echo "$datamix_weights $dataset_bin/data_text_document" > $datamix_file |
|
} |
|
|
|
task MakeDataMixAnnealing |
|
< dataset_bin=@PreprocessDataset |
|
> datamix_file_annealing |
|
:: datamix_weights_annealing=@ |
|
{ |
|
# simply write datamix weight and path in dataset_bin to a file, separated by a space |
|
echo "$datamix_weights_annealing $dataset_bin/data_text_document" > $datamix_file_annealing |
|
} |
|
|
|
task ContinuePretraining |
|
< megatron_model=$sharded_model@ModelSharding |
|
< dataset_bin=$dataset_bin@PreprocessDataset[Dataset:*] |
|
< datamix_file=$datamix_file@MakeDataMix[Dataset:*] |
|
> model_dir=checkpoints |
|
:: repo=@ |
|
:: log_interval=@ |
|
:: save_interval=@ |
|
:: eval_interval=@ |
|
:: train_steps=@ |
|
:: lr_scheduler=@ |
|
:: warmup_steps=@ |
|
:: lr=@ |
|
:: lr_min=@ |
|
:: n_gpus=@ |
|
:: gpu_ids=@ |
|
:: tp=@ |
|
:: pp=@ |
|
:: external_model_dir=@ |
|
:: tokenizer_path=@ |
|
:: micro_batch_size=@ |
|
:: grad_accum_steps=@ |
|
:: weight_decay=@ |
|
:: freeze_layers=@ |
|
:: eval_iters=@ |
|
:: model_type=@ |
|
:: seq_length=@ |
|
:: glu_activation=@ |
|
:: kv_channels=@ |
|
:: layernorm_epsilon=@ |
|
:: tokenizer_type=@ |
|
{ |
|
#external_model_dir="${external_model_dir}_${lr}" |
|
if [ "$external_model_dir" != "" ]; then |
|
mkdir -p $external_model_dir |
|
mkdir -p $external_model_dir/runs |
|
ln -s $external_model_dir $model_dir |
|
fi |
|
|
|
data_path="" |
|
for f in $datamix_file; do |
|
# read file |
|
data_path="$data_path `cat $f`" |
|
done |
|
echo "Running with data_path=$data_path" |
|
|
|
FREEZE_ARGS="" |
|
if [ "$freeze_layers" == "not_embeddings" ]; then |
|
FREEZE_ARGS="--freeze_layers" |
|
fi |
|
echo $FREEZE_ARGS |
|
|
|
export CUDA_VISIBLE_DEVICES=$gpu_ids |
|
|
|
# if load_from_checkpoint, then set megatron_model to external_model_dir |
|
ckpt_flag=$external_model_dir/latest_checkpointed_iteration.txt |
|
if [ -f $ckpt_flag ]; then |
|
megatron_model=$external_model_dir |
|
echo Loading from previously saved checkpoint. |
|
fi |
|
|
|
KV_CHANNELS_ARGS="" |
|
if [ "$kv_channels" != "" ]; then |
|
KV_CHANNELS_ARGS="--kv_channels $kv_channels" |
|
fi |
|
|
|
TIE_ARGS="" |
|
if [ $model_type != 'gemma' ]; then |
|
TIE_ARGS+="--no_tie_embed_logits" |
|
fi |
|
|
|
|
|
global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps)) |
|
|
|
LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval --eval_iters $eval_iters --log_validation_ppl_to_tensorboard --log_memory_to_tensorboard --log_batch_size_to_tensorboard" |
|
TRAIN_ARGS="--train_iters $train_steps --lr_decay_style $lr_scheduler --lr_warmup_iters $warmup_steps --lr $lr --min_lr $lr_min --weight_decay $weight_decay" |
|
DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 8134" |
|
COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion" |
|
LLAMA_ARGS="--use_rms_norm --glu_activation $glu_activation --no_new_tokens --layernorm_epsilon $layernorm_epsilon" |
|
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \ |
|
--tensor_model_parallel_size $tp \ |
|
--pipeline_model_parallel_size $pp \ |
|
--load $megatron_model \ |
|
--save $model_dir \ |
|
--tensorboard_dir $external_model_dir/runs \ |
|
--data_path $data_path \ |
|
--model_name $model_type \ |
|
--tokenizer_type $tokenizer_type \ |
|
--vocab_file=$tokenizer_path \ |
|
--bf16 \ |
|
--use_flash_attn \ |
|
--micro_batch_size $micro_batch_size \ |
|
--global_batch_size $global_batch_size \ |
|
--sequence_parallel \ |
|
--recompute_granularity selective \ |
|
--use_checkpoint_args \ |
|
--seq_length $seq_length \ |
|
--split 9995,3,2 \ |
|
--sliding_window_size 4096 \ |
|
--reset_attention_mask \ |
|
--no_bias_gelu_fusion \ |
|
$COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS $FREEZE_ARGS $KV_CHANNELS_ARGS $TIE_ARGS |
|
} |
|
|
|
|
|
task Annealing |
|
< megatron_model=$model_dir@ContinuePretraining |
|
< dataset_bin=$dataset_bin@PreprocessDataset[Dataset:*] |
|
< datamix_file=$datamix_file_annealing@MakeDataMixAnnealing[Dataset:*] |
|
> model_dir=checkpoints |
|
:: repo=@ |
|
:: log_interval=@ |
|
:: save_interval=@ |
|
:: eval_interval=@ |
|
:: train_steps_annealing=@ |
|
:: lr_scheduler_annealing=@ |
|
:: lr_annealing=@ |
|
:: lr_min_annealing=@ |
|
:: warmup_steps_annealing=@ |
|
:: n_gpus=@ |
|
:: gpu_ids=@ |
|
:: tp=@ |
|
:: pp=@ |
|
:: external_model_dir=@ |
|
:: external_model_dir_annealing=@ |
|
:: tokenizer_path=@ |
|
:: micro_batch_size=@ |
|
:: grad_accum_steps=@ |
|
:: weight_decay=@ |
|
:: freeze_layers=@ |
|
:: eval_iters=@ |
|
:: model_type=@ |
|
:: seq_length=@ |
|
:: glu_activation=@ |
|
:: kv_channels=@ |
|
:: layernorm_epsilon=@ |
|
:: tokenizer_type=@ |
|
{ |
|
#external_model_dir="${external_model_dir}_${lr_annealing}" |
|
#external_model_dir_annealing="${external_model_dir_annealing}_${lr_annealing}" |
|
if [ "$external_model_dir" != "" ]; then |
|
mkdir -p $external_model_dir_annealing |
|
mkdir -p $external_model_dir/runs/annealing |
|
ln -s $external_model_dir_annealing $model_dir |
|
fi |
|
|
|
data_path="" |
|
for f in $datamix_file; do |
|
# read file |
|
data_path="$data_path `cat $f`" |
|
done |
|
echo "Running with data_path=$data_path" |
|
|
|
FREEZE_ARGS="" |
|
if [ "$freeze_layers" == "not_embeddings" ]; then |
|
FREEZE_ARGS="--freeze_layers" |
|
fi |
|
echo $FREEZE_ARGS |
|
|
|
KV_CHANNELS_ARGS="" |
|
if [ "$kv_channels" != "" ]; then |
|
KV_CHANNELS_ARGS="--kv_channels $kv_channels" |
|
fi |
|
|
|
TIE_ARGS="" |
|
if [ $model_type != 'gemma' ]; then |
|
TIE_ARGS+="--no_tie_embed_logits" |
|
fi |
|
|
|
export CUDA_VISIBLE_DEVICES=$gpu_ids |
|
|
|
|
|
global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps)) |
|
|
|
LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval --eval_iters $eval_iters --log_validation_ppl_to_tensorboard --log_memory_to_tensorboard --log_batch_size_to_tensorboard" |
|
TRAIN_ARGS="--train_iters $train_steps_annealing --lr_decay_style $lr_scheduler_annealing --lr_warmup_iters $warmup_steps_annealing --lr $lr_annealing --min_lr $lr_min_annealing --weight_decay $weight_decay" |
|
DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 8135" |
|
COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion" |
|
LLAMA_ARGS="--use_rms_norm --glu_activation $glu_activation --no_new_tokens --layernorm_epsilon $layernorm_epsilon" |
|
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \ |
|
--tensor_model_parallel_size $tp \ |
|
--pipeline_model_parallel_size $pp \ |
|
--load $megatron_model \ |
|
--save $model_dir \ |
|
--tensorboard_dir $external_model_dir/runs/annealing \ |
|
--data_path $data_path \ |
|
--model_name $model_type \ |
|
--tokenizer_type $tokenizer_type \ |
|
--vocab_file=$tokenizer_path \ |
|
--bf16 \ |
|
--use_flash_attn \ |
|
--micro_batch_size $micro_batch_size \ |
|
--global_batch_size $global_batch_size \ |
|
--sequence_parallel \ |
|
--recompute_granularity selective \ |
|
--use_checkpoint_args \ |
|
--seq_length $seq_length \ |
|
--split 9990,5,5 \ |
|
--sliding_window_size 4096 \ |
|
--annealing \ |
|
$COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS $FREEZE_ARGS $KV_CHANNELS_ARGS $TIE_ARGS |
|
} |
|
|
|
plan preprocess_mc4 { |
|
reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) * (DataMix: mc4_uniform) |
|
} |
|
|
|
plan preprocess_inst { |
|
reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko pl sv en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions en_de_pre_annealing de_en_pre_annealing en_fr_pre_annealing fr_en_pre_annealing en_es_pre_annealing es_en_pre_annealing en_it_pre_annealing it_en_pre_annealing en_nl_pre_annealing nl_en_pre_annealing en_pt_pre_annealing pt_en_pre_annealing en_ru_pre_annealing ru_en_pre_annealing en_zh_pre_annealing zh_en_pre_annealing en_ko_pre_annealing ko_en_pre_annealing en_de_wmt en_ru_wmt en_zh_wmt) |
|
} |
|
|
|
plan preprocess_data { |
|
reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko pl sv en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en en_pl pl_en en_sv sv_en instructions) * (DataMix: mc4_wiki_uniform) |
|
} |
|
|
|
plan train_mc4_wiki { |
|
reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_wiki de_wiki fr_wiki es_wiki it_wiki nl_wiki pt_wiki ru_wiki zh_wiki ko_wiki) * (DataMix: mc4_wiki_uniform) |
|
} |
|
|
|
plan train_mc4 { |
|
reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) |
|
} |
|
|
|
plan prepare_data { |
|
reach DumpHFDataset via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) |
|
} |
|
|
|
plan preprocess_data_parallel { |
|
reach PreprocessDataset via (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_ko ko_en en_zh zh_en) |
|
} |
|
|
|
plan train_mc4_parallel_instructions { |
|
reach ContinuePretraining via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions) |
|
} |
|
|
|
plan train_mc4_parallel_instructions_annealing { |
|
reach Annealing via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions) |
|
} |
|
|
|
plan train_mc4_parallel { |
|
reach ContinuePretraining via (Size: 8) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) |
|
} |
|
|
|
plan train_mc4_parallel_13B { |
|
reach ContinuePretraining via (Size: 13) * (TP: 8) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) |
|
} |
|
|
|
plan warmed_up_train { |
|
reach ContinuePretrainingWarmedUp via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_wiki de_wiki fr_wiki es_wiki it_wiki nl_wiki pt_wiki ru_wiki zh_wiki ko_wiki) * (DataMix: mc4_wiki_uniform) |
|
} |
|
|
|
plan train_parallel { |
|
reach ContinuePretraining via (Size: 8) * (TP: 4) * (PP: 1) * (Dataset: en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) |
|
} |
|
|
|
plan gemma_test { |
|
reach ContinuePretraining via (Size: 1) * (TP: 2) * (PP: 1) * (Dataset: en es) |
|
} |
|
|
|
plan train_mc4_parallel_gemma { |
|
reach ContinuePretraining via (Size: 2) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) |
|
} |
|
|
|
plan annealing { |
|
reach Annealing via (Size: 1) * (TP: 4) * (PP: 1) * (Dataset: *) |
|
} |
|
|
|
plan cpt { |
|
reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) |
|
} |