TinyLlama-CPT / multilinguality_megatron /ducttape /tiny_llama_porfirio_annealing.tconf
KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
10.9 kB
global {
model_type="llama2"
ducttape_output=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_tinyllama_annealing_baseline
repo=/mnt/data/jpombal/multilinguality_megatron
external_model_dir=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_tinyllama_annealing_baseline/mc4_parallel_checkpoints
external_model_dir_annealing=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_tinyllama_annealing_baseline/mc4_parallel_checkpoints_annealed
model_path=/mnt/data_2/cache/models--TinyLlama--TinyLlama-1.1B-intermediate-step-1431k-3T/snapshots/036fa4651240b9a1487f709833b9e4b96b4c1574/
tokenizer_path=/mnt/data_2/cache/models--TinyLlama--TinyLlama-1.1B-intermediate-step-1431k-3T/snapshots/036fa4651240b9a1487f709833b9e4b96b4c1574/tokenizer.model
dataset=(Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en)
dataset_path=(Dataset:
en=/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered/en/filtered_en_2023-06_head_documents.jsonl.gz
es=/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered/es/filtered_es_2023-06_head_documents.jsonl.gz
de=/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered/de/filtered_de_2023-06_head_documents.jsonl.gz
fr=/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered/fr/filtered_fr_2023-06_head_documents.jsonl.gz
nl=/mnt/data/shared/tower_llm_data/webcorpus/nl/0000.json.gz
pt=/mnt/data/shared/tower_llm_data/webcorpus/pt/0000.json.gz
it=/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered/it/filtered_it_2023-06_head_documents.jsonl.gz
ru=/mnt/data/shared/tower_llm_data/webcorpus/ru/0000.json.gz
zh=/mnt/data/shared/tower_llm_data/webcorpus/zh/0000.json.gz
ko=/mnt/data/shared/tower_llm_data/webcorpus/ko/0000.json.gz
en_de="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
de_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_fr="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
fr_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_es="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
es_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_it="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
it_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_nl="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
nl_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_pt="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
pt_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_ru="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
ru_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_zh="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
zh_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
en_ko="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
ko_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75"
)
is_hf_dataset=(Dataset:
en=False
es=False
de=False
fr=False
nl=False
pt=False
it=False
ru=False
zh=False
ko=False
en_de=False
de_en=False
en_fr=False
fr_en=False
en_es=False
es_en=False
en_it=False
it_en=False
en_nl=False
nl_en=False
en_pt=False
pt_en=False
en_ru=False
ru_en=False
en_zh=False
zh_en=False
en_ko=False
ko_en=False
)
threshold=(Dataset:
en=10000000
es=10000000
de=10000000
fr=10000000
nl=10000000
pt=10000000
it=10000000
ru=10000000
zh=10000000
ko=10000000
en_de=100000
de_en=100000
en_fr=100000
fr_en=100000
en_es=100000
es_en=100000
en_it=100000
it_en=100000
en_nl=100000
nl_en=100000
en_pt=100000
pt_en=100000
en_ru=100000
ru_en=100000
en_zh=100000
zh_en=100000
en_ko=100000
ko_en=100000
)
# rougly 67% for mc4, 33% for total parallel data
datamix_weights=(
DataMix:
mc4_parallel_instructions=(
Dataset:
en=670
es=670
de=670
fr=670
nl=670
pt=670
it=670
ru=670
zh=670
ko=670
en_de=183
de_en=183
en_fr=183
fr_en=183
en_es=183
es_en=183
en_it=183
it_en=183
en_nl=183
nl_en=183
en_pt=183
pt_en=183
en_ru=183
ru_en=183
en_zh=183
zh_en=183
en_ko=183
ko_en=183
)
)
datamix_weights_annealing=(
DataMix:
mc4_parallel_instructions=(
Dataset:
en=670
es=670
de=670
fr=670
nl=670
pt=670
it=670
ru=670
zh=670
ko=670
en_de=183
de_en=183
en_fr=183
fr_en=183
en_es=183
es_en=183
en_it=183
it_en=183
en_nl=183
nl_en=183
en_pt=183
pt_en=183
en_ru=183
ru_en=183
en_zh=183
zh_en=183
en_ko=183
ko_en=183
)
)
# number such that final tokens for each language are around 1B
n_tokens=(Dataset:
en=1000000000
es=833333330
de=833333330
fr=833333330
nl=833333330
pt=833333330
it=833333330
ru=500000000
zh=13888888
ko=250000000
en_de=20000000
de_en=20000000
en_fr=20000000
fr_en=20000000
en_es=20000000
es_en=20000000
en_it=20000000
it_en=20000000
en_nl=20000000
nl_en=20000000
en_pt=20000000
pt_en=20000000
en_ru=20000000
ru_en=20000000
en_zh=20000000
zh_en=20000000
en_ko=20000000
ko_en=20000000
)
is_parallel=(Dataset:
en=False
es=False
de=False
fr=False
nl=False
pt=False
it=False
ru=False
zh=False
ko=False
en_de=True
de_en=True
en_fr=True
fr_en=True
en_es=True
es_en=True
en_it=True
it_en=True
en_nl=True
nl_en=True
en_pt=True
pt_en=True
en_ru=True
ru_en=True
en_zh=True
zh_en=True
en_ko=True
ko_en=True
)
lp=(Dataset:
en="none"
es="none"
de="none"
fr="none"
nl="none"
pt="none"
it="none"
ru="none"
zh="none"
ko="none"
en_de="en-de"
de_en="de-en"
en_fr="en-fr"
fr_en="fr-en"
en_es="en-es"
es_en="es-en"
en_it="en-it"
it_en="it-en"
en_nl="en-nl"
nl_en="nl-en"
en_pt="en-pt"
pt_en="pt-en"
en_ru="en-ru"
ru_en="ru-en"
en_zh="en-zh"
zh_en="zh-en"
en_ko="en-ko"
ko_en="ko-en"
)
min_perplexity=0
size=(Size: 1 7 13)
log_interval=1
save_interval=635
eval_interval=635
train_steps=5556
train_steps_annealing=794
lr_scheduler=constant
warmup_steps=32
lr=3e-5
lr_min=3e-6
weight_decay=0.1
lr_scheduler_annealing=linear
warmup_steps_annealing=0
lr_annealing=3e-5
lr_min_annealing=3e-6
n_gpus=7
gpu_ids=1,2,3,4,5,6,7
tp=(TP: 1 2 3 4 5 6 7 8)
pp=(PP: 1 2 3 4)
micro_batch_size=4
grad_accum_steps=26
vocab_size=32000
cpu_workers=16
wikipedia=False
freeze_layers=""
posterior_tokens=False
n_posterior_tokens=0
eval_iters=1
seq_length=2048
glu_activation=swiglu
kv_channels=""
layernorm_epsilon=1e-5
}