# This script will try to run a task *outside* any specified submitter # Note: This script is for archival; it is not actually run by ducttape # unset CUDA_VISIBLE_DEVICES echo $CUDA_VISIBLE_DEVICES data_path="1 spgi_vox_mls_text_1b/data/data_text_document" megatron_model="spgi_vox_mls_text_1b/shards" model_dir="spgi_vox_mls_text_1b/ckpt" tokenizer_path="spgi_vox_mls_text_1b/new_extended_tokenizer/tokenizer.model" tp="2" pp="1" # --wandb_logger \ # --wandb_id "hajmola" \ # --wandb_project "Megatron" \ # --wandb_entity "hajmola" \ # --wandb_api_key "c4a95af43e910d14b0eca23fbb8165f94944d5af" \ # optimization arguments; self-explanatory. Intervals and steps are in terms of training optimizer steps grad_accum_steps="12" micro_batch_size="12" warmup_steps="13" eval_interval="500" lr="3e-5" #lr="3e-5" log_interval="10" lr_min="3e-6" #lr_min="3e-6" lr_scheduler="cosine" # infra arguments save_interval="250" n_gpus="2" repo="multilinguality_megatron" gpu_ids="4,5" train_steps="1000" # Parse command-line arguments for arg in "$@" do case $arg in --help) echo "Usage: ./script.sh [OPTIONS]" echo "Options:" echo " --data_path=PATH Path to dataset. Should have the form of ..., where the integers determine the data's relative weight in the training set. If every integer is equal, then the data is uniformly sampled." echo " --megatron_model=PATH Path to sharded megatron model" echo " --model_dir=PATH folder to save model checkpoints; if this has a checkpoint, it will be used to continue training" echo " --tokenizer_path=PATH Path to tokenizer.model of original HF model" echo " --tp=NUMBER Number of shards model is divided in" echo " --pp=NUMBER Pipeline parallel (default is 1)" echo " --grad_accum_steps=NUMBER" echo " Number of gradient accumulation steps" echo " --micro_batch_size=NUMBER" echo " Micro batch size" echo " --warmup_steps=NUMBER Number of warmup steps" echo " --eval_interval=NUMBER Number of steps between validations" echo " --lr=NUMBER Learning rate" echo " --log_interval=NUMBER Number of steps between logging" echo " --lr_min=NUMBER Minimum learning rate of scheduler" echo " --lr_scheduler=STRING Learning rate scheduler" echo " --save_interval=NUMBER Number of steps between saves" echo " --n_gpus=NUMBER Number of GPUs to use" echo " --repo=PATH Path to repo" echo " --gpu_ids=STRING GPU IDs to use" echo " --train_steps=NUMBER Number of training steps" exit 0 ;; --data_path=*) data_path="${arg#*=}" shift ;; --megatron_model=*) megatron_model="${arg#*=}" shift ;; --model_dir=*) model_dir="${arg#*=}" shift ;; --tokenizer_path=*) tokenizer_path="${arg#*=}" shift ;; --tp=*) tp="${arg#*=}" shift ;; --pp=*) pp="${arg#*=}" shift ;; --grad_accum_steps=*) grad_accum_steps="${arg#*=}" shift ;; --micro_batch_size=*) micro_batch_size="${arg#*=}" shift ;; --warmup_steps=*) warmup_steps="${arg#*=}" shift ;; --eval_interval=*) eval_interval="${arg#*=}" shift ;; --lr=*) lr="${arg#*=}" shift ;; --log_interval=*) log_interval="${arg#*=}" shift ;; --lr_min=*) lr_min="${arg#*=}" shift ;; --lr_scheduler=*) lr_scheduler="${arg#*=}" shift ;; --save_interval=*) save_interval="${arg#*=}" shift ;; --n_gpus=*) n_gpus="${arg#*=}" shift ;; --repo=*) repo="${arg#*=}" shift ;; --gpu_ids=*) gpu_ids="${arg#*=}" shift ;; --train_steps=*) train_steps="${arg#*=}" shift ;; esac done # CUDA_VISIBLE_DEVICES=$gpu_ids if [ "$model_dir" != "" ]; then mkdir -p $model_dir mkdir -p $model_dir/runs fi ckpt_flag=$model_dir/latest_checkpointed_iteration.txt if [ -f $ckpt_flag ]; then megatron_model=$model_dir echo Loading from previously saved checkpoint. fi global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps)) LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval" TRAIN_ARGS="--train_iters $train_steps --lr_decay_style $lr_scheduler --lr_warmup_iters $warmup_steps --lr $lr --min_lr $lr_min" DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 50000" COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion" LLAMA_ARGS="--use_rms_norm --glu_activation swiglu --no_tie_embed_logits --no_new_tokens --layernorm_epsilon 1e-5" CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \ --tensor_model_parallel_size $tp \ --pipeline_model_parallel_size $pp \ --load $megatron_model \ --save $model_dir \ --tensorboard_dir $model_dir/runs \ --data_path $data_path \ --model_name llama \ --tokenizer_type SentencePieceTokenizer \ --vocab_file=$tokenizer_path \ --bf16 \ --use_flash_attn \ --micro_batch_size $micro_batch_size \ --global_batch_size $global_batch_size \ --sequence_parallel \ --recompute_granularity selective \ --use_checkpoint_args \ --seq_length 2048 \ --split 99,1,1 \ $COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS