#!/bin/bash WORLD_SIZE=8 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" TRAIN_DATA="data/glue_data/MNLI/train.tsv" VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \ data/glue_data/MNLI/dev_mismatched.tsv" PRETRAINED_CHECKPOINT=checkpoints/bert_345m VOCAB_FILE=bert-vocab.txt CHECKPOINT_PATH=checkpoints/bert_345m_mnli python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \ --task MNLI \ --seed 1234 \ --train_data $TRAIN_DATA \ --valid_data $VALID_DATA \ --tokenizer_type BertWordPieceLowerCase \ --vocab_file $VOCAB_FILE \ --epochs 5 \ --pretrained_checkpoint $PRETRAINED_CHECKPOINT \ --tensor_model_parallel_size 1 \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --micro_batch_size 8 \ --activations_checkpoint_method uniform \ --lr 5.0e-5 \ --lr_decay_style linear \ --lr_warmup_fraction 0.065 \ --seq_length 512 \ --max_position_embeddings 512 \ --save_interval 500000 \ --save $CHECKPOINT_PATH \ --log_interval 10 \ --eval_interval 100 \ --eval_iters 50 \ --weight_decay 1.0e-1 \ --fp16