#!/bin/bash GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH= CHECKPOINT_PATH= DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_t5.py \ --tensor-model-parallel-size 2 \ --num_layers 12 \ --hidden_size 768 \ --num_attention_heads 12 \ --kv_channels 64 \ --ffn_hidden_size 3072 \ --encoder_seq_length 512 \ --decoder_seq_length 128 \ --micro_batch_size 16 \ --global_batch_size 128 \ --max_position_embeddings 512 \ --train_iters 1000000 \ --lr_decay_iters 1000000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data_path $DATA_PATH \ --vocab_file t5-vocab.txt \ --data_impl mmap \ --split 949,50,1 \ --lr 0.0001 \ --min_lr 0.00001 \ --lr_decay_style linear \ --lr_warmup_fraction .01 \ --weight_decay 1e-2 \ --clip_grad 1.0 \ --log_interval 100 \ --save_interval 10000 \ --eval_interval 1000 \ --eval_iters 10 \ --fp16 \ --vocab_extra_ids 100