# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Megatron initialization.""" import random import time import numpy as np import torch from datetime import timedelta import megatron import megatron.fused_kernels from megatron import get_adlr_autoresume from megatron import get_tensorboard_writer from megatron.core import mpu, tensor_parallel import megatron.arguments from megatron.checkpointing import load_args_from_checkpoint from megatron.global_vars import set_global_variables from megatron.model.transformer import bias_dropout_add_fused_train from megatron.model.fused_bias_gelu import bias_gelu def initialize_megatron(extra_args_provider=None, args_defaults={}): """Set global variables, initialize distributed, and set autoresume and random seeds. `allow_no_cuda` should not be set unless using megatron for cpu only data processing. In general this arg should not be set unless you know what you are doing. """ # Make sure cuda is available. assert torch.cuda.is_available(), 'Megatron requires CUDA.' # Parse arguments args = megatron.arguments.parse_args(extra_args_provider) if args.use_checkpoint_args or args_defaults.get('use_checkpoint_args', False): assert args.load is not None, '--use-checkpoints-args requires --load argument' load_args_from_checkpoint(args) megatron.arguments.validate_args(args, args_defaults) # set global args, build tokenizer, and set adlr_autoresume, # tensorboard-writer, and timers. set_global_variables(args) # torch.distributed initialization def _finish_mpu_init(): _initialize_distributed(args) # Random seeds for reproducibility. if args.rank == 0: print('> setting random seeds to {} ...'.format(args.seed)) _set_random_seed(args.seed, args.data_parallel_random_init) # Megatron's MPU is the master. Complete initialization right away. _finish_mpu_init() _init_autoresume() # _compile_dependencies(args) # No continuation function return None def _compile_dependencies(args): # ========================= # Compile dataset C++ code. # ========================= # TODO: move this to ninja if torch.distributed.get_rank() == 0: start_time = time.time() print('> compiling dataset index builder ...') from megatron.data.dataset_utils import compile_helper compile_helper() print('>>> done with dataset index builder. Compilation time: {:.3f} ' 'seconds'.format(time.time() - start_time), flush=True) # ================== # Load fused kernels # ================== # Custom kernel constraints check. seq_len = args.seq_length attn_batch_size = \ (args.num_attention_heads / args.tensor_model_parallel_size) * \ args.micro_batch_size # Constraints on sequence length and attn_batch_size to enable warp based # optimization and upper triangular optimization (for causal mask) custom_kernel_constraint = seq_len > 16 and seq_len <= 4096 and \ seq_len % 4 == 0 and attn_batch_size % 4 == 0 if not ((args.fp16 or args.bf16) and custom_kernel_constraint and args.masked_softmax_fusion): if args.rank == 0: print('WARNING: constraints for invoking optimized' ' fused softmax kernel are not met. We default' ' back to unfused kernel invocations.', flush=True) # Always build on rank zero first. if torch.distributed.get_rank() == 0: start_time = time.time() print('> compiling and loading fused kernels ...', flush=True) megatron.fused_kernels.load(args) torch.distributed.barrier() else: torch.distributed.barrier() megatron.fused_kernels.load(args) # Simple barrier to make sure all ranks have passed the # compilation phase successfully before moving on to the # rest of the program. We think this might ensure that # the lock is released. torch.distributed.barrier() if torch.distributed.get_rank() == 0: print('>>> done with compiling and loading fused kernels. ' 'Compilation time: {:.3f} seconds'.format( time.time() - start_time), flush=True) def _initialize_distributed(args): """Initialize torch.distributed and core model parallel.""" device_count = torch.cuda.device_count() if torch.distributed.is_initialized(): if args.rank == 0: print('torch distributed is already initialized, ' 'skipping initialization ...', flush=True) args.rank = torch.distributed.get_rank() args.world_size = torch.distributed.get_world_size() else: if args.rank == 0: print('> initializing torch distributed ...', flush=True) # Manually set the device ids. if device_count > 0: device = args.rank % device_count if args.local_rank is not None: assert args.local_rank == device, \ 'expected local-rank to be the same as rank % device-count.' else: args.local_rank = device torch.cuda.set_device(device) # Call the init process torch.distributed.init_process_group( backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, timeout=timedelta(minutes=10) ) # Set the tensor model-parallel, pipeline model-parallel, and # data-parallel communicators. if device_count > 0: if mpu.model_parallel_is_initialized(): print('model parallel is already initialized') else: mpu.initialize_model_parallel(args.tensor_model_parallel_size, args.pipeline_model_parallel_size, args.virtual_pipeline_model_parallel_size, args.pipeline_model_parallel_split_rank) if args.rank == 0: print(f'> initialized tensor model parallel with size ' f'{mpu.get_tensor_model_parallel_world_size()}') print(f'> initialized pipeline model parallel with size ' f'{mpu.get_pipeline_model_parallel_world_size()}') def _init_autoresume(): """Set autoresume start time.""" autoresume = get_adlr_autoresume() if autoresume: torch.distributed.barrier() autoresume.init() torch.distributed.barrier() def _set_random_seed(seed_, data_parallel_random_init=False): """Set random seed for reproducability.""" if seed_ is not None and seed_ > 0: # Ensure that different pipeline MP stages get different seeds. seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank()) # Ensure different data parallel ranks get different seeds if data_parallel_random_init: seed = seed + (10 * mpu.get_data_parallel_rank()) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.device_count() > 0: tensor_parallel.model_parallel_cuda_manual_seed(seed) else: raise ValueError('Seed ({}) should be a positive integer.'.format(seed_)) def write_args_to_tensorboard(args): """Write arguments to tensorboard.""" # NOTE: if we use wandb, then the args are logged on creation, so nothing happens in this # function. if not getattr(args,"wandb_logger",False): writer = get_tensorboard_writer() if writer: for arg in vars(args): writer.add_text(arg, str(getattr(args, arg)), global_step=args.iteration) def set_jit_fusion_options(args): """Set PyTorch JIT layer fusion options.""" # flags required to enable jit fusion kernels TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10): # nvfuser torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(True) torch._C._debug_set_autodiff_subgraph_inlining(False) else: # legacy pytorch fuser torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) _warmup_jit_function(args) def _warmup_jit_function(args): """ Compile JIT functions before the main training steps """ if args.bf16: dtype = torch.bfloat16 elif args.fp16: dtype = torch.float16 else: dtype = torch.float32 # Warmup fused bias+gelu bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size, dtype=dtype, device='cuda') input = torch.rand((args.seq_length, args.micro_batch_size, args.ffn_hidden_size // args.tensor_model_parallel_size), dtype=dtype, device='cuda') # Warmup JIT fusions with the input grad_enable state of both forward # prop and recomputation for bias_grad, input_grad in zip([True, True], [False, True]): bias.requires_grad, input.requires_grad = bias_grad, input_grad for _ in range(5): output = bias_gelu(bias, input) del bias, input, output # Warmup fused bias+dropout+add if args.sequence_parallel: seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size() else: seq_length = args.seq_length input = torch.rand((seq_length, args.micro_batch_size, args.hidden_size), dtype=dtype, device='cuda') residual = torch.rand((seq_length, args.micro_batch_size, args.hidden_size), dtype=dtype, device='cuda') bias = torch.rand((args.hidden_size), dtype=dtype, device='cuda').expand_as(residual) dropout_rate = 0.1 # Warmup JIT fusions with the input grad_enable state of both forward # prop and recomputation for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]): input.requires_grad = input_grad bias.requires_grad = bias_grad residual.requires_grad = residual_grad for _ in range(5): output = bias_dropout_add_fused_train(input, bias, residual, dropout_rate) del bias, input, residual, output torch.cuda.empty_cache()