# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Classification model.""" import torch import megatron.model.language_model from megatron import get_args, print_rank_last from megatron.model.enums import AttnMaskType from megatron.model.bert_model import bert_extended_attention_mask, bert_position_ids import megatron.model.utils from megatron.model.utils import init_method_normal from megatron.model.utils import scaled_init_method_normal from .module import MegatronModule class Classification(MegatronModule): def __init__(self, num_classes, num_tokentypes=2, pre_process=True, post_process=True, model_type=None): super(Classification, self).__init__(share_word_embeddings=False) args = get_args() self.num_classes = num_classes self.pre_process = pre_process self.post_process = post_process init_method = init_method_normal(args.init_method_std) self.language_model, self._language_model_key = megatron.model.language_model.get_language_model( num_tokentypes=num_tokentypes, add_pooler=True, encoder_attn_mask_type=AttnMaskType.padding, init_method=init_method, scaled_init_method=scaled_init_method_normal(args.init_method_std, args.num_layers), pre_process=self.pre_process, post_process=self.post_process, args=args, model_type=model_type ) # Multi-choice head. if self.post_process: self.classification_dropout = torch.nn.Dropout(args.hidden_dropout) self.classification_head = megatron.model.utils.get_linear_layer(args.hidden_size, self.num_classes, init_method, args.perform_initialization) self._classification_head_key = 'classification_head' def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward(self, model_input, attention_mask, tokentype_ids=None): extended_attention_mask = bert_extended_attention_mask(attention_mask) input_ids = model_input position_ids = bert_position_ids(input_ids) lm_output = self.language_model( input_ids, position_ids, extended_attention_mask, tokentype_ids=tokentype_ids ) if self.post_process: _, pooled_output = lm_output classification_output = self.classification_dropout(pooled_output) classification_logits = self.classification_head(classification_output) # Reshape back to separate choices. classification_logits = classification_logits.view(-1, self.num_classes) return classification_logits return lm_output def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) if self.post_process: state_dict_[self._classification_head_key] \ = self.classification_head.state_dict(prefix=prefix, keep_vars=keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.language_model.load_state_dict( state_dict[self._language_model_key], strict=strict) if self.post_process: if self._classification_head_key in state_dict: self.classification_head.load_state_dict( state_dict[self._classification_head_key], strict=strict) else: print_rank_last('***WARNING*** could not find {} in the checkpoint, ' 'initializing to random'.format( self._classification_head_key))