# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Megatron Module""" import torch from torch.autograd import Variable from torch.nn.parameter import Parameter from megatron import get_args from megatron.core import mpu, tensor_parallel _FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor) _HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor) _BF16_TYPES = (torch.BFloat16Tensor, torch.cuda.BFloat16Tensor) def param_is_not_shared(param): return not hasattr(param, 'shared') or not param.shared class MegatronModule(torch.nn.Module): """Megatron specific extensions of torch Module with support for pipelining.""" def __init__(self, share_word_embeddings=True): super(MegatronModule, self).__init__() self.share_word_embeddings = share_word_embeddings def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """Use this function to override the state dict for saving checkpoints.""" return self.state_dict(prefix=prefix, keep_vars=keep_vars) def word_embeddings_weight(self): if self.pre_process: if self.language_model.tie_embed_logits: return self.language_model.embedding.word_embeddings.weight return self.language_model.lm_head else: if not self.language_model.tie_embed_logits: return self.language_model.lm_head if not self.share_word_embeddings: raise Exception('word_embeddings_weight() called for last ' 'stage, but share_word_embeddings is false') return self.word_embeddings.weight def initialize_word_embeddings(self, init_method_normal, args): if not self.share_word_embeddings: raise Exception('initialize_word_embeddings() was called but ' 'share_word_embeddings is false') # This function just initializes the word embeddings in the final stage # when we are using pipeline parallelism. Nothing to do if we aren't # using pipeline parallelism. if args.pipeline_model_parallel_size == 1: return # Parameters are shared between the word embeddings layers, and the # heads at the end of the model. In a pipelined setup with more than # one stage, the initial embedding layer and the head are on different # workers, so we do the following: # 1. Create a second copy of word_embeddings on the last stage, with # initial parameters of 0.0. # 2. Do an all-reduce between the first and last stage to ensure that # the two copies of word_embeddings start off with the same # parameter values. # 3. In the training loop, before an all-reduce between the grads of # the two word_embeddings layers to ensure that every applied weight # update is the same on both stages. if mpu.is_pipeline_last_stage() and \ not self.pre_process: assert not mpu.is_pipeline_first_stage() self._word_embeddings_for_head_key = 'word_embeddings_for_head' # set word_embeddings weights to 0 here, then copy first # stage's weights using all_reduce below. self.word_embeddings = tensor_parallel.VocabParallelEmbedding( args.padded_vocab_size, args.hidden_size, init_method=init_method_normal(args.init_method_std), params_dtype=args.params_dtype, use_cpu_initialization=args.use_cpu_initialization, perform_initialization=args.perform_initialization) self.word_embeddings.weight.data.fill_(0) self.word_embeddings.weight.shared = True # Zero out initial weights for decoder embedding. # NOTE: We don't currently support T5 with the interleaved schedule. if not mpu.is_pipeline_first_stage(ignore_virtual=True) and \ self.pre_process: self.language_model.embedding.zero_parameters() if not torch.distributed.is_initialized(): if not getattr(MegatronModule, "embedding_warning_printed", False): print("WARNING! Distributed processes aren't initialized, so " "word embeddings in the last layer are not initialized. " "If you are just manipulating a model this is fine, but " "this needs to be handled manually. If you are training " "something is definitely wrong.") MegatronModule.embedding_warning_printed = True return # Ensure that first and last stages have the same initial parameter # values. if mpu.is_rank_in_embedding_group(): torch.distributed.all_reduce(self.word_embeddings_weight().data, group=mpu.get_embedding_group()) # Ensure that encoder(first stage) and decoder(split stage) position # embeddings have the same initial parameter values # NOTE: We don't currently support T5 with the interleaved schedule. if mpu.is_rank_in_position_embedding_group() and \ args.pipeline_model_parallel_split_rank is not None: # TODO: Support tokentype embedding. self.language_model.embedding.cuda() position_embeddings = self.language_model.embedding.position_embeddings torch.distributed.all_reduce(position_embeddings.weight.data, group=mpu.get_position_embedding_group()) def conversion_helper(val, conversion): """Apply conversion to val. Recursively apply conversion if `val` #is a nested tuple/list structure.""" if not isinstance(val, (tuple, list)): return conversion(val) rtn = [conversion_helper(v, conversion) for v in val] if isinstance(val, tuple): rtn = tuple(rtn) return rtn def fp32_to_float16(val, float16_convertor): """Convert fp32 `val` to fp16/bf16""" def half_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, _FLOAT_TYPES): val = float16_convertor(val) return val return conversion_helper(val, half_conversion) def float16_to_fp32(val): """Convert fp16/bf16 `val` to fp32""" def float_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)): val = val.float() return val return conversion_helper(val, float_conversion) class Float16Module(MegatronModule): def __init__(self, module, args): super(Float16Module, self).__init__() if args.fp16: self.add_module('module', module.half()) def float16_convertor(val): return val.half() elif args.bf16: self.add_module('module', module.bfloat16()) def float16_convertor(val): return val.bfloat16() else: raise Exception('should not be here') self.float16_convertor = float16_convertor def set_input_tensor(self, input_tensor): return self.module.set_input_tensor(input_tensor) def forward(self, *inputs, **kwargs): if mpu.is_pipeline_first_stage(): inputs = fp32_to_float16(inputs, self.float16_convertor) outputs = self.module(*inputs, **kwargs) if mpu.is_pipeline_last_stage(): outputs = float16_to_fp32(outputs) return outputs def state_dict(self, prefix='', keep_vars=False): return self.module.state_dict(prefix=prefix, keep_vars=keep_vars) def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): return self.module.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) def load_state_dict(self, state_dict, strict=True): self.module.load_state_dict(state_dict, strict=strict)