# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. import datetime import torch import json import threading from flask import Flask, request, jsonify, current_app from flask_restful import Resource, Api from megatron import get_args from megatron.text_generation import generate_and_post_process from megatron.text_generation import beam_search_and_post_process GENERATE_NUM = 0 BEAM_NUM = 1 lock = threading.Lock() class MegatronGenerate(Resource): def __init__(self, model): self.model = model @staticmethod def send_do_generate(): choice = torch.cuda.LongTensor([GENERATE_NUM]) torch.distributed.broadcast(choice, 0) @staticmethod def send_do_beam_search(): choice = torch.cuda.LongTensor([BEAM_NUM]) torch.distributed.broadcast(choice, 0) def put(self): args = get_args() if not "prompts" in request.get_json(): return "prompts argument required", 400 if "max_len" in request.get_json(): return "max_len is no longer used. Replace with tokens_to_generate", 400 if "sentences" in request.get_json(): return "sentences is no longer used. Replace with prompts", 400 prompts = request.get_json()["prompts"] if not isinstance(prompts, list): return "prompts is not a list of strings", 400 if len(prompts) == 0: return "prompts is empty", 400 if len(prompts) > 128: return "Maximum number of prompts is 128", 400 tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow if "tokens_to_generate" in request.get_json(): tokens_to_generate = request.get_json()["tokens_to_generate"] if not isinstance(tokens_to_generate, int): return "tokens_to_generate must be an integer greater than 0" if tokens_to_generate < 0: return "tokens_to_generate must be an integer greater than or equal to 0" logprobs = False if "logprobs" in request.get_json(): logprobs = request.get_json()["logprobs"] if not isinstance(logprobs, bool): return "logprobs must be a boolean value" if tokens_to_generate == 0 and not logprobs: return "tokens_to_generate=0 implies logprobs should be True" temperature = 1.0 if "temperature" in request.get_json(): temperature = request.get_json()["temperature"] if not (type(temperature) == int or type(temperature) == float): return "temperature must be a positive number less than or equal to 100.0" if not (0.0 < temperature <= 100.0): return "temperature must be a positive number less than or equal to 100.0" top_k = 0.0 if "top_k" in request.get_json(): top_k = request.get_json()["top_k"] if not (type(top_k) == int): return "top_k must be an integer equal to or greater than 0 and less than or equal to 1000" if not (0 <= top_k <= 1000): return "top_k must be equal to or greater than 0 and less than or equal to 1000" top_p = 0.0 if "top_p" in request.get_json(): top_p = request.get_json()["top_p"] if not (type(top_p) == float): return "top_p must be a positive float less than or equal to 1.0" if top_p > 0.0 and top_k > 0.0: return "cannot set both top-k and top-p samplings." if not (0 <= top_p <= 1.0): return "top_p must be less than or equal to 1.0" top_p_decay = 0.0 if "top_p_decay" in request.get_json(): top_p_decay = request.get_json()["top_p_decay"] if not (type(top_p_decay) == float): return "top_p_decay must be a positive float less than or equal to 1.0" if top_p == 0.0: return "top_p_decay cannot be set without top_p" if not (0 <= top_p_decay <= 1.0): return "top_p_decay must be less than or equal to 1.0" top_p_bound = 0.0 if "top_p_bound" in request.get_json(): top_p_bound = request.get_json()["top_p_bound"] if not (type(top_p_bound) == float): return "top_p_bound must be a positive float less than or equal to top_p" if top_p == 0.0: return "top_p_bound cannot be set without top_p" if not (0.0 < top_p_bound <= top_p): return "top_p_bound must be greater than 0 and less than top_p" add_BOS = False if "add_BOS" in request.get_json(): add_BOS = request.get_json()["add_BOS"] if not isinstance(add_BOS, bool): return "add_BOS must be a boolean value" if any([len(prompt) == 0 for prompt in prompts]) and not add_BOS: return "Empty prompts require add_BOS=true" stop_on_double_eol = False if "stop_on_double_eol" in request.get_json(): stop_on_double_eol = request.get_json()["stop_on_double_eol"] if not isinstance(stop_on_double_eol, bool): return "stop_on_double_eol must be a boolean value" stop_on_eol = False if "stop_on_eol" in request.get_json(): stop_on_eol = request.get_json()["stop_on_eol"] if not isinstance(stop_on_eol, bool): return "stop_on_eol must be a boolean value" prevent_newline_after_colon = False if "prevent_newline_after_colon" in request.get_json(): prevent_newline_after_colon = request.get_json()["prevent_newline_after_colon"] if not isinstance(prevent_newline_after_colon, bool): return "prevent_newline_after_colon must be a boolean value" random_seed = -1 if "random_seed" in request.get_json(): random_seed = request.get_json()["random_seed"] if not isinstance(random_seed, int): return "random_seed must be integer" if random_seed < 0: return "random_seed must be a positive integer" no_log = False if "no_log" in request.get_json(): no_log = request.get_json()["no_log"] if not isinstance(no_log, bool): return "no_log must be a boolean value" beam_width = None if "beam_width" in request.get_json(): beam_width = request.get_json()["beam_width"] if not isinstance(beam_width, int): return "beam_width must be integer" if beam_width < 1: return "beam_width must be an integer > 1" if len(prompts) > 1: return "When doing beam_search, batch size must be 1" stop_token=50256 if "stop_token" in request.get_json(): stop_token = request.get_json()["stop_token"] if not isinstance(stop_token, int): return "stop_token must be an integer" length_penalty = 1 if "length_penalty" in request.get_json(): length_penalty = request.get_json()["length_penalty"] if not isinstance(length_penalty, float): return "length_penalty must be a float" with lock: # Need to get lock to keep multiple threads from hitting code if not no_log: print("request IP: " + str(request.remote_addr)) print(json.dumps(request.get_json()),flush=True) print("start time: ", datetime.datetime.now()) try: if beam_width is not None: MegatronGenerate.send_do_beam_search() # Tell other ranks we're doing beam_search response, response_seg, response_scores = \ beam_search_and_post_process( self.model, prompts=prompts, tokens_to_generate=tokens_to_generate, beam_size = beam_width, add_BOS=add_BOS, stop_token=stop_token, num_return_gen=beam_width, # Returning whole beam length_penalty=length_penalty, prevent_newline_after_colon=prevent_newline_after_colon ) return jsonify({"text": response, "segments": response_seg, "scores": response_scores}) else: MegatronGenerate.send_do_generate() # Tell other ranks we're doing generate response, response_seg, response_logprobs, _ = \ generate_and_post_process( self.model, prompts=prompts, tokens_to_generate=tokens_to_generate, return_output_log_probs=logprobs, top_k_sampling=top_k, top_p_sampling=top_p, top_p_decay=top_p_decay, top_p_bound=top_p_bound, temperature=temperature, add_BOS=add_BOS, use_eod_token_for_early_termination=True, stop_on_double_eol=stop_on_double_eol, stop_on_eol=stop_on_eol, prevent_newline_after_colon=prevent_newline_after_colon, random_seed=random_seed) return jsonify({"text": response, "segments": response_seg, "logprobs": response_logprobs}) except ValueError as ve: return ve.args[0] print("end time: ", datetime.datetime.now()) class MegatronServer(object): def __init__(self, model): self.app = Flask(__name__, static_url_path='') api = Api(self.app) api.add_resource(MegatronGenerate, '/api', resource_class_args=[model]) def run(self, url): self.app.run(url, threaded=True, debug=False)